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Preface

The term “weakly differentiable functions” in the title refers to those inte-
grable functions defined on an open subset of R* whose partial derivatives
in the sense of distributions are either LP functions or (signed) measures
with finite total variation. The fornter ctass of functions comprises what
is now known as Sobolev spaces, though its origin, traceable to the early
19005, predates the contributions by Sobolev. Both classes of functions,
Sobolev spaces and the space of functions of bounded variation (BV func-
tions), have undergone considerable development during the past 20 years.
From this development a rather complete theory has emerged and thus has
provided the main impetus for the writing of this book. Since these classes
of functions play a significant role in many fields, such as approximation
theory, calculus of variations, partial differential equations, and non-linear
potential theory, it is hoped that this monograph will be of assistance to a
wide range of graduate students and researchers in these and perhaps other
related areas. Some of the material in Chapters 1-4 has been presented in
a graduate course at Indiana University during the 1987-88 academic year,
and I amn indebted to the students and colleagues in attendance for their
helpful comments and suggestions.

The major thrust of this book is the analysis of pointwise behavior of
Sobolev and BV functions. I have not attempted to develop Sobolev spaces
of fractional order which can be described in terms of Bessel potentials,
since this would require an effort beyond the scope of this book. Instead,
I concentrate on the analysis of spaces of integer order which is largely
accessible through real variable techniques, but does not totally exclude
the use of Bessel potentials. Indeed, the investigation of pointwise behavior
requires an analysis of certain exceptional sets and they can be conveniently
described in terms of elementary aspects of Bessel capacity.

The only prerequisite for the present volume is a standard graduate
course in real analysis, drawing especially from Lebesgue point theory and
measure theory. The material is organized in the following manner. Chap-
ter 1 is devoted to a review of those topics in real analysis that are needed
in the sequel. Included here is a brief overview of Lebesgue measure, L?
spaces, Hausdorff measure, and Schwartz distributions. Also included are
sections on covering theorems and Lorentz spaces—the latter being neces-
sary for a treatment of Sobolev inequalities in the case of critical indices.
Chapter 2 develops the basic properties of Sobolev spaces such as equiva-
lent formulations of Sobolev functions and their behavior under the opera-
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tions of truncation, composition, and change of variables. Also included is a
proof of the Sobolev inequality in its simplest form and the related Rellich-
Kondrachov Compactness Theorem. Alternate proofs of the Sobolev in-
equality are given, including the one which relates it to the isoperimetric
inequality and provides the best constant. Limiting cases of the Sobolev
inequality are discussed in the context of Lorentz spaces.

The remaining chapters are central to the book. Chapter 3 develops the
analysis of pointwise behavior of Sobolev functions. This includes a dis-
cussion of the continuity properties of functions with first derivatives in
L? in terms of Lebesgue points, approximate continuity, and fine conti-
nuity, as well as an analysis of differentiability properties of higher order
Sobolev functions by means of LP-derivatives. Here lies the foundation for
more delicate results, such as the comparison of LP-derivatives and dis-
tributional derivatives, and a result which provides an approximation for
Sobolev functions by smooth functions (in norm) that agree with the given
function everywhere except on sets whose complements have small capacity.

Chapter 4 develops an idea due to Norman Meyers. He observed that
the usual indirect proof of the Poincaré inequality could be used to es-
tablish a Poincaré-type inequality in an abstract setting. By appropriately
interpreting this inequality in various contexts, it yields virtually all known
inequalities of this genre. This general inequality contains a term which in-
volves an element of the dual of a Sobolev space. For many applications,
this term is taken as a measure; it therefore is of interest to know precisely
the class of measures contained in the dual of a given Sobolev space. For-
tunately, the Hedberg-Wolff theorem provides a characterization of such
measures.

The last chapter provides an analysis of the pointwise behavior of BV
functions in a manner that runs parallel to the development of Lebesgue
point theory for Sobolev functions in Chapter 3. While the Lebesgue point
theory for Sobolev functions is relatively easy to penetrate, the corre-
sponding development for BV functions is much more demanding. The
intricate nature of BV functions requires a more involved exposition than
daes Sobolev functions, but at the same time reveals a rich and beautiful
structure which has its foundations in geometric measure theory. After the
structure of BV functions has been developed, Chapter 5 returns to the
analysis of Poincaré inequalities for BV functions in the spirit developed
for Sobolev functions, which includes a characterization of measures that
belong to the dual of BV.

In order to place the text in better perspective, each chapter is con-
cluded with a section on historical notes which includes references to all
important and relatively new results. In addition to cited works, the Bib-
liography contains many other references related to the material in the
text. Bibliographical references are abbreviated in square brackets, such as
[DL). Equation numbers appear in parentheses; theorems, lemmas, corollar-
jes,and remarks are numbered as a.b.c where b refers to section b in chapter
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a, and section a.b refers to section b in chapter a.

I wish to thank David Adams, Robert Glassey, Tero Kilpeliinen,
Christoph Neugebauer, Edward Stredulinsky, Tevan Trent, and William
K. Ziemer for having critically read parts of the manuscript and supplied
many helpful suggestions and corrections.

WILLIAM P. ZIEMER
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1

Preliminaries

Beyond the topics usually found in basic real analysis, virtually all of the
material found in this work is self-contained. In particular, most of the in-
formation contained in this chapter will be well-known by the reader and
therefore no attempt has been made to make a complete and thorough pre-
sentation. Rather, we merely introduce notation and develop a few concepts
that will be needed in the sequel.

1.1 Notation

Throughout, the symbol Q will generally denote an open set in Euclidean
space R" and @ will designate the empty set. Points in-R™ are denoted by
r = (xy,...,2,), wherez; € R', 1 < i < n. If 2,y € R, the inner product

ofx and y is
n
z-y= Tip
i=1

and the norm of r is
/2

[z| = (z-x)
If u: 2 — R!is a function defined on Q, the support of u is defined by
sptu = QN {x:u(z) # 0},

where the closure of a set § C R" is denoted by 5. If § ¢ Q, S compact
and also § C 2, we shall write S CC €. The boundary of a set S is defined
by

98 = SN (R - S).

For E C R" and r € R", the distance from z to E is
d(z,E) =inf{|lx —y|: y € E}.
It is a simple exercise (see Exercise 1.1) to show that
|d(z, E) - d(y, E)| < |z - y!
whenever z,y € R*. The diameter of a set E C R" is defined by

diam(E) = sup{jz — y] : z,y € E},
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and the characteristic function E is denoted by xg. The symbol
B(z,r)={y: |z -yl <r}

denotes the open ball with center z, radius r and
B(z,r)={y:lz -yl <r}

will stand for the closed ball. We will use a(n) to denote the volume of the
ball of radius 1 in R™. If « = (aj,...,a,) is an n-tuple of non-negative
integers, a is called a mulii-indez and the length of o is

n
la| = Za.-.
=1

Ifz=(x,...,z,) € R*, we will let

AN SRR - RRRRE S

and a! = a;lay!- - a,!. The pariial derivative operators are denoted by
D, = 8/0z; for 1 < i < n, and the higher order derivatives by

D® =D ... Do = __o
B | n —ax;!l__.amgn'
The gradient of a real-valued function u is denoted by

Du(z) = (Dyu(z),. .., Dyu(x)).

If k is a non-negative integer, we will sometimes use D*u to denote the
vector DXy = {D%u})q=k-

We denote by C°(§2) the space of continuous functions on Q. More gen-
erally, if k is a non-negative integer, possibly oo, let

C*) = {v:w:Q — R, D°v € C%(N), 0<|al <k},
CE(Q) = C*(Q) N {u : spt u compact, spt u C £},
and
Ck(@1) = C*(Q) N {u: Du has a continuous extension to {1,0 < |af < k}.

Since {2 is open, a function u € C*(f) need not be bounded on Q. However,
if u is bounded and uniformly continuous on , then u can be uniquely
extended to a continuous function on Q. We will use C*(2; R™) to denote
the class of functions u: Q2 — R™ defined on 2 whose coordinate functions
belong to C*({2). Similar notation is used for other function spaces whose
elements are vector-valued.



1.2. Measures on R" 3

If 0 < a £ 1, we say that u is Holder continuous on Q with exponent a
if there is a constant C such that

lu(z) — u(y)| < Clz - y[*, =,y €N

We designate by C%°(10) the space of all functions u satisfying this condi-
tion on £2. In case & = 1, the functions are called Lipschitz and the constant
C is denoted by Lip(u). For functions that possess some differentiability,
we let

C*2(@) = CO*(@) N {u: DPu € CO*(R), 0 < |8| < k).

Note that C*(Q) is a Banach space when provided with the norm

+ max sup|D?u(x)).
I81=* = vE0 |z - y|° 0<I8|Sk z¢0
z#y

1.2 Measures on R"

For the definition of Lebesgue outer measure, we consider closed n-dimen-
sional intervals
I={z:0;,<z;<b;, i=1,...,n}

and their volumes

o(I) =[] (& - &)
i=1

The Lebesgue outer measure of an arbitrary set E C R" is defined by

oo [o o]
|E| = inf {Zv(l,‘) EC U Ix, I) an imerval} (1.2.1)

k=1 k=1

A set E is said to be Lebesgue measurable if
|A| = |ANE|+|AD(R" - E)| (1.2.2)

whenever A C R™.

The reader may consult a standard text on measure theory to find that
the Lebesgue measurable sets form a o-algebra, which we denote by A; that
is

(i) o,R* € A

(ii) If E1,E,, ... € A, then -
UEiea (1.2.3)
i=1
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(iii) If E € A, then R - E € A

Observe that these conditions also imply that A is also closed under count-
able intersections. It follows immediately from (1.2.2) that sets of measure
zero are measurable. Also recall that if Ey, Ez,... are pairwise disjoint

measurable sets, then
oo
UE[=) IEl (1.2.4)

=1 =]

Moreover, if £y C E2 C ... are measurable, then

[= ]
U Ei| = lim |Ei| (1.2.5)
i=1 bmeo

and if E; D E; O ..., then
o
() Eil = lim |E4| (1.2.6)
! §—00

provided that |Eg| < oo for some k.

Up to this point, we find that Lebesgue measure possesses many of the
continuity properties that are essential for fruitful applications in analysis.
However, at this stage we do not yet know whether the o-algebra, A, con-
tains a sufficiently rich supply of sets to be useful. This possible objection
is met by the following result.

1.2.1. Theorem. Each closed set C C R" is Lebesgue measurable.

In view of the fact that the Borel subsets of R® form the smallest o-
algebra that contains the closed sets, we have

1.2.2. Corollary. The Borel sets of R™ are Lebesgue measurable.

Proof of Theorem 1.2.1. Because of the subadditivity of Lebesgue mea-
sure, it suffices to show that for a closed set C C R®,
[A| 2 |ANC|+[ANn(R" - C)| (1.2.7)

whenever A C R™. This will follow from the following property of Lebesgue
outer measure, which follows easily from (1.2.1):

|AU B| = |A] +|B| (1.2.8)

whenver A, B € R* with d(A,B) = inf{|z~y|: z € A,y € B} > 0. Indeed,
it is sufficient to establish that {AU B} > | 4|+ |B|. For this purpose, choose
£ >0 and let
oo
AUBC U I, where

k=1
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oo
Y u(lk) <|AUB| +e. (1.2.9)
i=1

Because d(A, B) > 0, there exists disjoint open sets U and V such that

ACU, BcV. (1.2.10)
Clearly, the covering of AU B by {I;} can be modified so that, for each k,
L.cUuuv (1.2.11)

and that (1.2.9) still remains valid. However, (1.2.10) and (1.2.11) imply

[o o]

S vl 2 141 + 1B

i=1

In order to prove (1.2.7), consider A C R™ with |A| < oo and let C; =
{x : d(z,C) < 1/i}. Note that

d(A-C;,ANC)>0
and therefore, from (1.2.8),
[A|>[(A-Ci)U(ANC)|2|A-Ci| +|ANC)|. (1.2.12)
The proof of (1.2.7) will be concluded if we can show that
.'ETOM ~-Cl=|A-C|

Note that we cannot invoke (1.2.5) because it is not known that A — C; is
measurable since A4 is an arbitrary set, perhaps non-measurable. Let

1 1
. = ¢ — <_ 2.
T; Aﬂ{z.i+1<d(z,0)~i} (1.2.13)

and note that since C is closed,
A-C=(A-C)u (UT.-) (1.2.14)
=)
which in turn, implies

|A-Cl<|A-Cjl+ Y ITil. (1.2.15)

=3

Hence, the desired conclusion will follow if it can be shown that

o]
3 IT| < oo. (1.2.16)
i=1
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To eatablish this, first observe that d(T;,T;) > 0 if |i — j| > 2. Thus, we
obtain from (1.2.8) that for each positive integer m,

U Ty
i=1

™m
=Y |Tul < |Al < oo,
1=1

m m
ZTzi—l| = UT2-—1 < JA| < oo.
i=1 i=1
This establishes (1.2.16) and thus concludes the proof. O

1.2.3. Remark. Lebesgue measure and Hausdorff measure (which will be
introduced in Section 1.4) will meet most of the applications that occur
in this book, although in Chapter 5, it will be necessary to consider more
general measures. We say that u is a measure on R" if u assigns a non-
negative (possibly infinite) number to each subset of B™ and (@) = 0. It
is also accepted terminology to call such a set function an outer measure.
Following (1.2.2), a set E is called u-measurable if

#(A) = p(ANE) + (AN (R" - E))

whenever A C R". A measure g on R" is called a Borel measure if every
Borel set is y-measurable. A Borel measure 4 with the properties that each
subset of R™ is contained within a Borel set of equal 4 measure and that
#(K) < oo for each compact set K C R" is called a Radon measure.

Many outer measures defined on R" have the property that the Borel sets
are measurable. However, it is sometimes necessary to consider a larger o-
algebra of sets, namely, the Susiin sets, (often referred to as analytic sets).
They have the property of remaining invariant under continuous mappings
on R", a property not enjoyed by the Borel sets. The Suslin sets of R® can
be defined in the following manner. Let A denote the space of all infinite
sequences of positive integers topologized by the metric
i 2" a; — by
ppy 1+ |a¢ - b,'
where {a;} and {b;} are elements of A. Let R™ x A be endowed with the
product topology. If

p:R"xN - R"
is the projection defined by p(z,a) = z, then a Suslin set of R® can be
defined as the image under p of some closed subset of R™ x N,

The main reason for providing the preceding review of Lebesgue measure
is to compare its development with that of Hausdorff measure, which is
not as well known as Lebesgue measure but yet is extremely important in
geometric analysis and will play a significant role in the development of
this monograph.
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1.3 Covering Theorems

Before discussing Hausdorff measure, it will be necessary to introduce sev-
eral important and useful covering theorems, the first of which is based on
the following implication of the Axiom of Choice.

Hausdorff Maximal Principle. If £ is a family of sets (or a collection
of families of sets) and if {UF : F € F} € £ for any subfamily F of £
with the property that

FcGorGCF whenever F,.GE€F,

then there exists E C £ which s mazimal tn the sense that it 1s not a subset
of any other member of £.

_ The following notation will be used. If B is a closed ball of radius r, let
B denote the closed ball concentric with B with radius 5r.

1.3.1. Theorem. Let G be a family of closed balls with
R =sup{diam B : B € G} < oc.
Then there is a subfamily F C G of pairwise disjoint elements such tha!
{UB:BeG}C{uB:BeF}
gl falc;, for each B € G there exists B, € F such that BN B, # 0 and
C B,.

Proof. We determine F as follows. For j =1,2,... let

G,:Q’ﬂ{B: 251 < diam B < 531;1}'
and observe that G = U2,G,. Now proceed to define F; C G; inductively
as follows.

Let i C G, be an arbitrary maximal subcollection of pairwise disjoint
elements. Such a collection exits by the Hausdorff maximal principle. As-
suming that F,, F3,...,F;_; have been chosen, let F; be a maximal pair-
wige disjoint subcollection of

ji—-1t
g,-n{B:BnB’:o whenever B’ € U.F.} (1.3.1)
i=1

Thus, for each B € G;, j > 1, there exists B, € U]_,F; such that BN B, #
@. For if not, the family F; consisting of B along with all elements of F;
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would be a pairwise disjoint subcollection of (1.3.1), thus contradicting the
maximality of F;. Moreover,

. R R .
diam B < Z1= 25;. < 2 diam B,

which implies that B C B,. Thus,

j
{uB:Beg,-}c{u}}:Be Uf.-},

i=1

and the conclusion holds by taking

1.3.2. Definition. A collection G of closed balls is said to cover a set
E C R™ finely if for each £ € E and each £ > 0, there exists B(z,r) € G
and r < €.

1.3.3. Corollary. Let E C R" be a set that is covered finely by G, where
G and F are as in Theorem 1.3.1. Then,

E-{UB:BeF}c{UuB:BeF-F}
for each finste collection F* C F.

Proof. Since R*—~ {UB : B € ¥"} is open, foreachz € E—{UB: B € F*}
there exists B € G such that z € B and BN[{UB: B € F*}} = @. From
Theorem 1.3.1, there is B, € F such that BN B, # 0 and B, D B. Now
B, ¢ F* since BN B; # @ and therefore

z€{UB:BeF~-F}. o

The next result addresses the question of determining an estimate for
the amount of overlap in a given family of closed balls. This will also be
considered in Theorem 1.3.5, but in the following we consider closed balls
whose radii vary in a Lipschitzian manner. The notation Lip(k) denotes
the Lipschitz constant of the mapping h.

1.3.4. Theorem. Let S C U C R" and suppose h : U — (0,00) is Lipschitz
with Lip(h) < A. Let @ > 0, 8 > 0 with Aa < 1 and A8 < 1. Suppose the
collection of closed n-balls {B(s, h(s)) : s € S} is disjointed. Let

S; = §n{s: B(z, ah(z)) N B(s, ﬂh(s}) # 0}
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Then
(1 =AB)/(1 + Aa) < h(z)/h(s) < (1+ AB)/(1 - Aa) (13.2)
whenever s € S; and
card(S;) < [a + (B +1)(1+ Aa)(1 = A8)7'J7[(1 + A8)/(1 - Aa))"

where card(S;) denotes the number of elements in S,.

Proof. If s € S;, then clearly |z — 8] < ah(z) + Bh(s) and therefore
[M(z) — h(s)| < Alz — s| < Aah(z) + ABh(s),
(1= AB)A(s) < (1+ Aa)h(z),
(1= Aa)h(z) < (1 + AB)h(s). (1.3.3)
Now,
|z — s} + h(s) < ah(z) + (B + 1)h(s)
< ah(z) + (8 + 1)[(1 + Aa)/(1 - AB)]k(z)
= vh(z)
where v = a + (8+ 1)(1 + Aa)/(1 — AB). Hence
B(s, h(s)) C B(z,vh(z)) whenever s€ S;.
Since {B(s, h(s))} is a disjoint family,
ij [B(s, h(s))] < |B(s, 7h(z))]
€S,
or from (1.3.3)
card(S;)a(r){(1+Aa)(1-28)"A(z)]* < 3 a(n)h(s)" < a(n)ivh(z))". O
s€S,

We now consider an arbitrary collection of closed balls and find a sub-
cover which is perhaps not disjoint, but whose elements have overlap which
is controlled.

1.3.5. Theorem. There is a positive number N > 1 depending only on n
30 that any family B of closed balls sn R™ whose cardinalsty is no less than
N and R = sup{r : B(a,r) € B} < oo contains disjointed subfomilies B,,
B,,...,Byn such that if A is the set of centers of balls in B, then

N
Ac|J{uB:BeB}.

i=1
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Proof.

Step I. Assume A is bounded.

Choose B, = B(a;,r;) withr; > %—R. Assuming we have chosen B, ...,
B;_, in B where j > 2 choose B; inductively as follows. If 4; = A ~
U{:f B; = 0, then the process stops and we set J = j. If A; # 9, continue
by choosing B; = B(aj,7;) € B so that a; € A; and

> ;—Ssup{r : B(a,r) € B,a € A;}. (1.3.4)

If A; # 0 for all j, then we set J = +o00. In this case limy, o, 7; = 0
because A is bounded and the inequalities

ri 2 ..
1a,-—a,-|>r.-=§'+3 .>—+?’ for i < 3,
imply that
{B(aj,r3/3) : 1 < j < J} is disjointed. (1.3.5)
In case J < 00, we clearly have the inclusion
Ac{uB;:1<j<J} (1.3.6)

This is also true in case J = +00, for otherwise there would exist B(a,r) €
B witha € N72;4; and an integer j with r; < 3r/4, contradicting the
choice of B;.

Step II. We now prove there exists an integer M (depending only on n)
such that for each k with 1 < k < J, M exceeds the number of balls B;
with1 <i <k and B; N B, # 0.

First note that if r; < 10rg, then

B(a,,7;/3) C B(ak, 15r)
because if £ € B(as,r:/3),

|:L‘ - akl < |:L‘ —a.-| + |a.- —akl
SIOrk/3+r.-+rk
3431'];/3( 15r;.

Hence, there are at most (60)™ balls B; with
1 <i<k, BiNBy #0, and r; < 107,
because, for each such i,
B(ai, ri/3) C B(ax, 1574),
and by (1.3.4) and (1.3.5)

|B(as,r:/3)| = |By| - (%)" > |By|- (%") 60"|13 ax, 1574)].
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To complete Step II, it remains to estimate the number of points in the set
1= {i: 1<i<k,BiNB #0,r; > 101‘;,}.

For this we first find an absolute lower bound on the angle between the two
vectors

a,—a, and a, —ax
corresponding to £, € I with ¢ < j. Assuming that this angle a < 2/2,
consider the triangle

and assume for notational convenience that ri =1, d = [a; — ak|. Then
0<r;<|a;—akg| <ri+1 and la;~a5| 27

because i € I, o € B;, B; N By # 0, and a; € B;. Also
4
10<r;<d§_r‘-+1<§r‘-+l

because j € I, ax € B;, Bj N By # 0, and (1.3.4) applies to r;.
The law of cosines yields

|lai — ax[* + d* - |ai - a;* (it 1)? +d? —r?

cosa =

2|a; —ax|d - 2rid
dledt 11 4 11 dn 1
2Tid d 27‘.‘d 27‘.‘ d 27‘.‘d 67‘; 21‘,‘
1 1 4 1
<—+ + = + — < .822

=107 200 6 20

hence |a| > arccos .822 > 0. Consequently, the rays determined by a; — ax

and a; — ax intersect the boundary of B(ag, 1) at points that are separated
by a distance of at least \/2(1 — cosa). Since the boundary of B(ax,1)
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has finite H®~! measure, the number of points in / is no more than some

constant depending only on n.

Step III. Choice of By, ..., By in case A is bounded.

With each positive integer j, we define an integer A; such that A; = j
whenever 1 < j € M and for j > M we define A, inductively as follows.
From Step II there is an integer A;4) € {1,2,..., M} such that

Bj.'.ln {UB‘ 01 S i S j,Al‘ = ’\j+l} = @.
Now deduce from (1.3.6) that the unions of the disjointed families
Bl = {B.‘I/\.‘ =l},...,BM = {B.'!/\,' =M}

covers A.

Step IV. The case A is unbounded.

For each positive integer £, apply Step III with A replaced by E, =
AN {z:3(£ - 1)R < |z|] < 3¢R} and B replaced by the subfamily C; of B
of balls with centers in E;. We obtain disjointed subfamilies B¢, ..., B4, of
C¢ such that

M
E, C U{UB:BGB:}.
s=1

Since PN Q = @ whenever P € B!, Q € B™ and m > £ + 2, the theorem
follows with

o0 = -]
B =JB¥",....Bu=JB}"
=1 =1

Buusr = U B Bang = L) B,
=1 =1
and N = 2M. @]

We use this result to establish the following covering theorem which
contains the classical result of Vitali involving Lebesgue measure. An in-
teresting and novel aspect of the theorem is that the set A is not assumed
to be y-measurable. The thrust of the proof is that the previous theorem
allows us to obtain a disjoint subfamily that provides a fixed percentage of
the x4 measure of the original set.

1.3.8. Theorem. Let u be a Radon measure on R" and suppose F is a
family of closed balls that covers a set A C R" finely, where u(A) < oo.
Then there ezists a countable disjoint subfamily G of F such that

u(A-{UB:Be€gG}) =0.
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Proof. Choose ¢ > 0so that £ < 1/N, where N is the constant that appears
in the previous theorem. Then F has disjointed subfamilies By, . .., By such
that

N
Ac|J{uB:Be B}

i=1

and therefore

N
#(A) <) u({u(ANB): B € B)).

i=1

Thus, there exists 1 < & < N such that
s({U(ANB): B e B} >1/N u(A),
which imphes
(A - {UB: BE€ By}) < (1-1/N)u(A).
Hence, there is a finite subfamily B, of By such that
(A - {UB:Bé€By}) < (1-1/N +e)u(A).

Now repeat this argument by replacing A with A, =1~ {UB : B € By, }
and F with Fy = FN{B: BN {UB : B € By,} = @} to obtain a finite
disjointed subfamily Bi, of F, such that

p(Ay —{UB: B € By,}) < (1 - 1/N +€)u(A)).

Thus,
u(A - {UB: B € By, UBy,}) < (1 -~ 1/N +¢)?u(A).

Continue this process to obtain the conclusion of the theorem with
oo
¢= B 0
=1

1.3.7. Lemma. Let yu and v be Radon measures on R™. For each positive
number a let (Blz,r)]
u[Blz,r
Ey=<{z:sup—=——"—"F>ay.
: { +>0 v[B(z,7) }

Then, u(Eq) > av(E,).

Proof. By restricting our attention to bounded subsets of E,, we may
assume that u(E,), v(E,;) < 00. Let U O E, be an open set. For ¢ > 0

and for each © € E,, there exists a sequence of closed balls B(z,r;) C U
with r; — 0 such that

B[B(z,7:)] > (a + €)v[B(=, 7i)]-
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This produces a family F of closed balls that covers E, finely. Hence, by
Theorem 1.3.6, there exists a disjoint subfamily G that covers v almost all

of E,. Consequently
(a+&)w(Es) < (a+e) Y v(B)< Y u(B) < n(U).

Beg Beg

Since € and U are arbitrary, the conclusion follows. 0

If f is a continuous function, then the integral average of f over a ball of
small radius is nearly the same as the value of f at the center of the ball.
A remarkable result of real analysis states that this is true at (Lebesgue)
almost all points whenever f is integrable. The following result provides a
proof relative to any Radon measure. The notation

f £(v) du(y)
B(z,r)

wlB(z, )]} /

B(z,

denotes
) f(y)du(y)-

1.3.8. Theorem. Let u be a Radon measure on R™ and f a locally inte-
grable function on R™ with respect to u. Then

lim fy)duly) = f(z)
r=0JB(z,r)

for u almost all r € R™.

Proof. Note that

f 16)utw) - 1| < £ 176) - slduts)
B(zx,r) B(z,r)

+ ]g . ls) = ftednte)

and if g is continuous, the last term converges to |g(z) — f(z)] as r — 0.
Letting L(z) denote the upper limit of the term on the left, we obtain

L(z) < sup f F(9) — 9)ldu() + l9(z) - £(2).
r>0J B(x,r)

Hence,

r>0

{r:L(z)>a}C {:r : supr( )If(ll) — 9(W)ldu(y) > 0’/2}
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U {z:lg(z) - f(z)! > a/2},

and therefore, by the previous lemma,
wiz: L) >apy <2/ [ 1f - gldu+2/a [ 1f - old
Since f[g. |f — gldn can be made arbitrarily small with appropriate choice

of g, cf. Section 1.6, it follows that u({z : L(z) > a}) = 0 for each a > 0.
a

1.3.9. Remark. If 4 and v are Radon measures with g absolutely con-
tinuous with respect to v, then the Radon-Nikodym theorem provides
f € L'Y(R™,v) such that

w(E) = /E f(z) du(z).

The results above show that the Radon-Nikodym derivative f can be taken
as the derivative of i with respect to v; that is,

. pB(z,r)] _
B, )

for v almost all x € R™.

1.4 Hausdorff Measure

The purpose here is to define a measure on R™ that will assign a reason-
able notion of “length,” “area” etc. to sets of appropriate dimension. For
example, if we would like to define the notion of length for an arbitrary set
E C R, we might follow (1.2.1) and let

A(E) = inf {idiamA,- :EC G A;, }

i=1 i=1

However, if we take n = 2 and E = {(¢,sin(1/t)) : 0 <t < 1}, it is easily
seen that A(E) < oo whereas we should have A(E) = oo. The difficulty with
this definition is that the approximating sets A; are not forced to follow
the geometry of the curve. This is changed in the following definition.

1.4.1. Definition. Foreach v > 0, ¢ > 0, and E C R", let

H)(E) = inf {i a(y)27 "diam(A;)Y : E C O A;,diam 4; < e} .

=1 i=1
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Because HY(E) is non-decreasing in €, we may define the v dimensional
Hausdorff measure of E as

HY(E) = lim H!(E). (1.4.1)

In case v is a positive integer, () denotes the volume of the unit ball
in R". Otherwise, a(y) can be taken as an arbitrary positive constant.
The reason for requiring a(v) to equal the volume of the unit ball in R”
when + i8 a positive integer is to ensure that HY(E) agrees with intuitive
notions of “y-dimensional area” when £ is a well-behaved set. For example,
it can be shown that H™ agrees with the usual definition of n-dimensional
area on an n-dimensional C! submanifold of R**¥, k > 0. More generally,
if f: R* — R™*k is a univalent, Lipschitz map and E C R™ a Lebesgue
measurable set, then

/ Jf = H™{f(E))
E

where J f is the square root of the sum of tlie squares of the n x n deter-
minants of the Jacobian matrix. The reader may consult {F4, Section 3.2
for a thorough treatment of this subject. Here, we will inerely show that
H" defined on R" is equal to Lebesgue measure.

1.4.2. Theorem. If E C R"®, then H"(E) = |E}.

Proof. First we show that
H}(E)<|E| forevery ¢>0.

Consider the case where |E| = 0 and E is bounded. For each n > 0, let
U D E be an open set with |U| < 7. Since U is open, U can be written as
the union of closed balis, each of which has diameter less than £. Theorem
1.3.1 states that there is a subfamily F of pairwise disjoint elements such
that

Vc{uB:BeF}

Therefore,

HNE)SHMNU)S Y~ HPB) < Y 27"a(n)(diam B;)"
BeF BieF
= )" 27"a(n)5"(diam B)"
B.eF
=5" Y |Bi|
B.eF
<5MU| < 5™n,
which proves that H™(E) = 0 since ¢ and 5 are arbitrary. The case when E
is unbounded is easily disposed of by considering E N B(0,1), i =1,2,....
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Each of these sets has zero n-dimensional Hausdorff measure, and thus so
does E.
Now suppose E is an arbitrary set with |E| < co. Let U D F be an open
set such that
|U| < |E| + 9. (14.2)

Appealing to Theorem 1.3.6, it is possible to find a family F of disjoint
closed balls By, By, ..., such that U2, B; C U, diam B; <¢,i =1,2,...,

and
E—U&
1=1

Let E* = U2, (ENB;) and observe that E = (E— E*)UE"® with |[E-E*| =
0. Now apply (1.4.1) and (1.4.2) to conclude that

=0. (1.4.3)

H}E®) < i 2" "a(n)(diam B;)"

i=1

oo
= ZIBil
o
0=
1=1

=|U| < |E| + 7.

Because € and 5 are arbitrary, it follows that H"(E*) < |E|. However,
H™(E) < H"(E-E*)+H"(E*) with H*(E~E") = 0 because [E—E*| = 0.
Therefore, H*(E) < |E|.

In order to establish the opposite inequality, we will employ the isods-
ametric inequality which states that among all sets E C R" with a given
diameter, d, the ball with diameter d has the largest Lebesgue measure;
that is,

|E| £ 27"a(n)(diam E)* (1.4.4)

whenever E C R". For a proof of this fact, see [F4, p. 197]. From this the
desired inequality follows immediately, for suppose

i 27a(n)(diam E;)" < H}'(E) +

i=1

where £ C U2, E;. Applying (1.4.3) to each E; yields

[E| < i IE| < 3 27 a(n)(diam E;)* < HME) + 1,

=1 i=1
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which implies, |E| £ H™{E) since € and 7 are arbitrary. =)

1.4.3. Remark. The reader can easily verify that the outer measure, H?,
has many properties in common with Lebesgue outer measure. For example,
(1.2.4), (1.2.5), and (1.2.6) are also valid for H” as well as the analog
of Corollary 1.2.2. However, a striking difference between the two is that
|E| < oo whenever E is bounded whereas this may be false for #7(E). One
important ramification of this fact is the following. A Lebesgue measurable
set, B, can be characterized by the fact that for every £ > 0, there exists
an open set U D E such that

U - E) <e. (1.4.5)

This regularity property cannot hold in general for H”.

The fact that H7(E) may be possibly infinite for bounded sets £ can be
put into better perspective by the following fact that the reader can easily
verify. For every set E, there is a non-negative number, d = d(E}, such
that

H'(E)=0 f yv>d
HY(E)=00 if y<d.

The number d(E) is called the Hausdorff dimension of E.

Finally, we make note of the following elementary but useful fact. Sup-
pose f: R — R**™ is a Lipschitz map with Lip(f) = M. Then for any set
E C RF

HE|f(E)] < MH*(E). (1.4.6)

In particular, sets of zero k-dimensional Hausdorff measure remain invari-
ant under Lipschitz maps.

1.5 L? Spaces

For 1 < p < 00, Lf, () will denote the space consisting of all measurable
functions on  that are p*"-power integrable on each compact subset of Q2.
LP(2) is the subspace of functions that are p'P-power integrable on €. In
case the underlying measure is u rather than Lebesgue measure, we will
employ the notation L} (f;u) and LP(Q, ) respectively. The norm on
LP(R) is given by

Nllp = ( /n |u|sz)l/p (1.5.1)

and in case p = oo, it i3 defined as

Julloo.r = essq sup |u|. (1.5.2)
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Analogous definitions are used in the case of LP(Q; ) and then the norm
is denoted by

llellp.nn-

The notation [ u(z)dz or sometimes simply [udz will denote integration
with respect to Lebesgue measure and [ udg the integral with respect to
the measure u. Strictly speaking, the elements of LP(f2) are not functions
but rather equivalence classes of functions, where two functions are said
to be equivalent if they agree everywhere on §) except possibly for a set of
measure zero. The choice of a particular representative will be of special
importance later in Chapters 3 and 5 when the pointwise behavior of func-
tions in the spaces W*?(R2) and BV(2) is discussed. Recall from Theorem
1.3.8 that if u € L'(R"), then for almost every zo € R™, there is a number
z such that

f u(y)dy -z as r — 0%,
B(zo.1)

where § denotes the integral average. We define u(zo) = z, and in this
way a canonical representative of u is determined. In those situations where
no confusion can occur, the elements of LP(Q2) will be regarded merely as
functions defined on 2.

The following lemma is very useful and will be used frequently through-
out.

1.5.1. Lemma. If u > 0 is measurable, p > 0, and E; = {z : u(z) > t},

then oo oo
/u(x)pd:z =/ | E¢|dt? =p/ 77| E,\dt. (1.5.3)
0 0 0

More generally, if u is a measure defined on some o-algebra of A", u >0
is a u-measurable function, and Q is the countable union of sets of finite
4 measure, then

/nu”dp=/o [J(Eg)dtp=p/0 P~ u(E,)dt. (1.5.4)

The proof of this can be obtained in at least two ways. Onc method is to
employ Fubini’s Theorem on the product space 2 x [0,00). Another is to
observe that (1.5.3) is immediate when u is a simple function. The general
case then follows by approximating u from below by simple functions.

The following algebraic and functional inequalities will be frequently used
throughout the course of this book.

Cauchy’s inequality: if ¢ > 0, a,b € R!, then

3 1
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and more generally, Young's inequality:

» ?
jab| < [£2F ; [b/el” (1.5.6)
P 4
where p>land 1/p+ 1/p =1.
From Young's inequality foltows Hilder’s inequality
[wde < lulpalivlya, p21 (1.5.7)
o

which holds for functions v € LP(), v € L¥ (). In case p = 1, we
take ¥ = oo and ||v]l,.a = esspsuplu|. Holder's inequality can be ex-
tended to the case of k¥ functions, u,,...,u; lying respectively in spaces

L (Q),..., P () where
’ k
1
Z o=t (1.5.8)

By an induction argument and (1.5.7) it follows that

/ul...ukdz < Musllpyar- - - lullpesn- (1.5.9)
Q

One important application of (1.5.7) is Minkowski’s inequality, which states
that (1.5.3) yields a norm on LP(2). That is,

Jlu + ”"p;ﬂ < "u”p;ﬂ + ”"”p;ﬂ (1.5.10)

for p > 1. Employing the notation

f udz = |Q|“]( udz,
Q Q

another consequence of Hélder’s inequality is

[frorad] < [ nar] " ws)

whenever 1 < p < ¢ and Q C R™ a measurable set with || < oo.
We also recall Jensen’s inequality whose statement involves the notion
of a convex function. A function A: R* — R! is said to be convex if

A[(1 = t)zy + tza] < (1 — t)A(z1) + tA(x2),

whenever ,, 72 € R" and 0 < ¢ < 1. Jensen's inequality states that if A is
a convex function on R" and £ C R" a bounded mecasurable set, then

A (fE f(z)d:r) < ]gA[f(z)]dm | (1.5.12)
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whenever f € L!(E).
A further consequence of Hélder's inequality is

lullg < Nullpliuilr=, ue L7(Q), (1.5.13)

where p < ¢ < r,and 1/qg = A/p+(1—A)/r. In order to see this, let @ = Ag,
B = (1 — A)g and apply Hélder’s inequality to obtain

1/z 1/y
/Iulqu = / lu]®|u)Pdr < (/ |u|‘"d:c) (/ lula"dz)
0 0 0 0

where z = p/Ag and y = r/(] ~ A)gq.

When endowed with the norm defined in (1.5.1), ZP(2), 1 < p < oo,
is a Banach space; that is, a complete, linear space. If 1 < p < oo, it is
also separable. The normed dual of LP(Q) consists of all bounded linear
functionals on LP(2) and is isometric to [}"(Q) provided p < oo. Hence,
LP(R) is reflexive for 1 < p < 0o. We recall the following fundamental result
concerning reflexive Banach spaces, which i8 of considerable importance in
the case of L*(Q).

1.5.2. Theorem. A Banach space is reflezive if and only if its closed unat
ball is weakly sequentielly compact.
1.6 Regularization

Let o be a non-negative, real-valued function in C§°(R"™) with the property
that

/ @(z)dzr =1, spty C B(0,1). (1.6.1)
An example of such a function is given by
Cexp[-1/(1 - |z|*)]if |z| < 1
() = { if |z) > 1 (1.6.2)

where C is chosen so that fp, ¢ = 1. For ¢ > 0, the function p(z) =
e~"p(z/e) belongs to C5°(R™) and spt g, C B(0,¢). g, is called a regular-
izer (or mollifier) and the convolution

w@) = peru(e) = [ e - vty (163)

defined for functions u for which the right side of (1.6.3) lias meaning,
is called the regularization (mollification) of u. Regularization has several
important and useful properties that are summarized in the following the-
orem.
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1.6.1. Theorem.
(i) If u € LY _(R™), then for everye > 0, u. € CP°(R") and D*(pc*u) =

loc
(D) * u for each multi-indez a.

(i) ue(x) — u(z) whenever z 1s a Lebesgue point for u. In case u is
continuous then u, converges untformly to u on compact subsels of

R,

(iti) If u € LP(R™), 1 < p < o0, ther u. € LP(R"), lfucl, < lullp, and
lime g [Jue — ull, = 0.

Proof. For the proof of (i), it suffices to consider |a| = 1, since the case of
general a can be treated by induction. Let ey,...,e, be the standard basis
of R™ and observe that

k
ue (T + heg) — v (z) = / / Dipe(x — z + te;)u(z)dtdz
=~ Jo

h
= / Dipe(z — z + te,)u(z)dzdt.
0o JR»
As a function of ¢, the inner integral on the right is coutinuous, and thus
(i) follows.
In case (ii) observe that
juelz) - (@l < [ oelz = platy) - ulo)ldy
<supoe™ [ Julz) - w(u)ldy — 0
B(z.e)

as € — 0 whenever z i3 a Lebesgue point for u«. Clearly the convergence
is locally uniform if u is continuous because u is uniformly continuous on

compact sets.
For the proof of (iii), Holder’s inequality yields

/ we(z — y)u(y)dy

< (/ Pe(x — y)dy) a (/soe(x - y)lu(y)i"dy) v

The first factor on the right is equal to 1 and hence, by Fubini’s theorem,

./n- |uePdr < ./;1" _/,;. Ce(z — y)lu(y)l”dydz

<[ [ oca-lutrdzay
= [ lstwea.
n'l

|ue(2)| =
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Consequently,
luelly < Mol (1.6.4)

To complete the proof, for each 7 > 0 let v € Co(RR*) be such that
lu -2, < n. (1.6.5)

Because v has compact support, it follows from (ii) that [lv — v, |, < % for
e sufficiently small. Now apply (1.6.4) and (1.6.5) to the diffcrence v — u
and obtain

lu = uelly < flu—vllp + llv ~ vellp + jlve ~ uell, < 39.
Hence 4, — u in LP(R") as ¢ — 0. a

1.6.2. Remark. If u € L!(Q), then u.(z) = @, * u(x) is defined provided
z €  and € < dist(z, 99). It is a simple matter to verify that Theorem
1.6.1 remains valid in this case with obvious modification. For example, if
u e C(?) and ' CC N, then u, converges uniformly to u on ' as ¢ — 0.

Also note that (iii) of Theorem 1.6.1. implies that mollification does
not increase the norm. This is intuitively clear since the norm rmist take
into account the extremities of the function and mollification, which is an
averaging operation, does not increase the extremities.

1.7 Distributions

In this section we present a very brief review of some of the elementary
concepts and techniques of the Schwartz theory of distributions [SCH] that
will be needed in subsequent chapters. The notion of weak or distributional
derivative will be of special importance.

1.7.1. Deflnition. Let @ C R™ be an open set. The space Z () is the
set of all ¢ in C§°(N2) endowed with a topology so that a sequence {p;}
converges to an element ¢ in 2 () if and only if

(i) there exists a compact set K C §2 such that spt; C K for every ¢,
and

(ii) lim; .o D®p; = D%y uniformly on K for each multi-index a.

The definition above does not attempt to actually define the topology
on 2 (1) but merely states a consequence of the rigorous definition which
requires the concept of “generalized sequences” or “nets,” a topic that
we do not wish to pursue in this brief treatment. For our purposes, it
will suffice to consider only ordinary sequences. It turns out that P ()
is a topological vector space with a locally convex topology but is not
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a normable space. The dual space, 2’(2), of & () is called the space of
(Schwartz) distributions and is given the weak®-topology. Thus, T; € & (Q2)
converges to T if and only if T;(p) — T(p) for every ¢ € F(Q).

We consider some important examples of distributions. Let x be a Radon
measure on 2 and define the corresponding distribution by

N@=/me

for all p € P (). Clearly T is a linear functional on Z(Q) and T ()| <
|si(spt @) llplloo, from which it is edsily seen that T is continuous, and thus a
distribution. In this way we will make an identification of Radon measures
and the associated distributions.

Similarly, let f € LY (), p > 1, and consider the corresponding signed

loc

measure y4 defined for all Borel sets E C R® by
wE) = [ sz
E
and pass to the associated distribution

10)= [ ele)fEs.

In the sequel we shall often identify locally integrable functions with their
corresponding distributions without explicitly indicating the identification.

1.7.2. Remark. We recall two facts about distributions that will be of
importance later. A distribution T on an open set {2 is said to be positive if
T{p) > 0 whenever ¢ > 0, ¢ € P (). A fundamental result in distribution
theory states that a positive distribution is a measure. Of course, not all
distributions are measures. For example, the distribution defined on R? by

nw=/¢ma

is not a measure since it is not continuous on & (f2) when endowed with
the topology of uniform convergence on compact sets.

Another important fact is that distributions are determined by their local
behavior. By this we mean that if two distributions 7 and S on  have
the property that for every z € Q there is a neighborhood U such that
T(p) = S(p) for all p € () supported by U, then T = S. For example,
this implies that if {Q2,} i8 a family of open sets such that UQ, = Q and
T is a distribution on 2 such that T is a measure on each Q,, then T is a
measure on §). This also implies that if a distribution T vanishes on each
open set of some family F, it then vanishes on the union of all elements of
F. The support of a distribution T is thus defined as the comnplement of
the largest open set on which T vanishes.
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We now proceed to define the convolution of a distribution with a test
function ¢ € Z (). For this purpose, we introduce the notation @(z) =
o(—x) and 7;,(y) = @(y — z). The convolution of a distribution T defined
on R™ with ¢ € P () is a function of class C> given by

T % p(z) = T(1.9). (1.7.1)
An obvious but iniportant observation is

T + (0) = T(709) = T ().

If the distribution T is given by a locally integrable function f then we
have

(T p)(z) = / £z - y)oly)dy

which is the usual definition for the convolution of two functions. It is easy
to verify that
Tx(psP)=(Txp)ey

whenever ¢, ¢ € 2.
Let T be a distribution on an open set . The partial derivative of T is
defined as
D;T(p) = —T(Diyp)

for ¢ € L (). Since D;p € L (N) it is clear that D;T is again a distribu-
tion. Since the test functions ¢ are smooth, the mixed partial derivatives
are independent of the order of differentiation:

DiD;p = D;Dip
and therefore the same equation holds for distributions:
DiDjT = D,‘D.‘T.

Consequently, for any multi-index a the corresponding derivative of T is
given by the equation

D°T(p) = (-1 T (D).

Finally, we note that a distribution on Q can be multiplied by smooth
functions. Thus, if T € @'(Q) and f € C*™(R), then the product fT is a
distribution defined by

(fT)g) =T(fe), »eD ()

The Leibniz formula is easily seen to hold in this context (see Exercise 1.5).
The reader is referred to [SCH] for a complete treatment of this topic.
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1.8 Lorentz Spaces

We have seen in Lemma 1.5.1 that if f € L}(R"), f > 0, then its integral
is completely determined by the measure of the sets {z : f(z) > t}, t € R.
The non-increasing rearrangement of f, (defined below) can be ide_ntiﬁed
with a radial function f having the property that for all ¢t € R!, {z : f(z) >
t} is a ball centered at the origin with the same measure as {z : f(z) > t}.
Consequently, f and f have the same integral. Because f can be thouglit
of as a function of one variable, it is often easier to employ than f. We
introduce a class of spaces called Lorentz spaces which are more general
but closely related to L”? spaces. Their definition is based on the concept
of non-increasing rearrangement. Later in Chapter 2, we will extend basic
Sobolev inequalities in an LP setting to that of Lorentz spaces.

1.8.1. Definition. If f is a measurable function defined on R™, let

Ef = {z:|f(2)} > s}, (1.8.1)

e
and let the distribution function of f be denoted by
ag(s) = |E]|. (18.2)

Note that the distribution function of f is non-negative, non-increasing,
and continuous from the right. With the distribution function we associate
the non-increasing rearrangement of f on (0, 00) defined by

[°(t) =inf{s >0:ay(s) < t}. (1.8.3)

Clearly f* is non-negative and non-increasing on (0, o). Further, if ay is
continuous and strictly decreasing, then f* is the inverse of ay, that is,
ff=a fl. It follows immediately from the definition of f*(t) that

flag(s) < s (1.8.4)
and because ay i3 continuous from the right, that

as(f' ) <t. (1.8.5)
These two facts lead immediately to the following propositions.
1.8.2. Proposition. f* is continuous from the right.
Proof. Clearly, f*(t) > f*(t + k) for all h > 0. If f* were not continuous

at t, there would exist y such that f*(t) > y > f*(t + ) for all A > 0. But
then, (1.8.5) would imply that a;(y) < as(f*(t+h)) <t+hforallh > 0.
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Thus, a;(y) < t and therefore, f*(t) < y, a contradiction. a
1.8.3. Proposition. ay.(s) = ay(s) for all s > 0.

Proof. Because f* is non-increasing, it follows from the definition of ay- (t)
that

as-(8) =sup{t >0: f*(t) > s}. (1.8.6)
Hence, f*(az(s)) < s implies as(s) > ay-(s). For the opposite inequal-
ity, note from (1.8.6) that if ¢ > ay.(s), then f*(t) < s and consequently,
ag(s) < ay(f*(t)) < t, by (1.8.5). Thus, ay(s) < ay-(s) and the proposi-
tion is established. a

1.8.4. Proposition. Let { f;} be a sequence of measurable functions on R"
such that {]£,]} is a non-decreasing sequence. If |f(x)] = im;_ | fi(Z)] for
each x € R", then ay, and f increase to ay and f* respectively.

Proof. Clearly
oo
El CEl and (JE[l'=E]

1=1
for each s and therefore ay,(8) — ay(s) as s — oo. It follows from definition
of non-increasing rearrangement, that f’(¢) < f7,,(t) < f*(t) for each ¢t
andi=1,2,.... Let g(t) = lim;~o f(t). Since f2(¢) < g(¢t) it follows from
(1.8.5) that ay, [9(t)] < ay,[f(t)] < t. Therefore,
afg(t)] = lim ayfg(t)] < ¢

which implies that f*(t) < g(¢). But g(t) < f*(¢) and therefore the proof
is complete. a

1.8.5. Theorem. If f € I7, 1 < p < o0, then

[/uvr”={£wuwmw4vp (1.8.7)

Proof. This follows immediately from Lemma 1.5.1 and the fact that f
and f* have the same distribution function (Proposition 1.8.3). a

We now introduce Lorentz spaces and in order to motivate the following
definition, we write (1.8.7) in a more suggestive form as

“”“=(£ww”rannym
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It is sometimes more convenient to work with the average of f* than
with f* itself. Thus, we define

H
ro=g [ ree

1.8.6. Deflnition. For | < p < co and 1 € ¢ < oc, the Lorentz space
L(p,q) is defined as

L(p,q) = {f : f measurable on R, ||fll(5.q) < 00} (1.8.8)
where || f|](5,q) i8 defined by

o0 dt l/q
I @”U"mv—]  1<p<ool<g<
0 t
Ml =

sup tM/7 £*°(t), 1<p<o0,q=o00.
t>0

It will be shown in Lemma 1.8.10 that
L(p,p) = L*. (1.8.9)

The norm above could be defined with f** replaced by f* in case p > 1
and 1 < ¢ < oo. This alternate definition remains equivalent to the original
one in view of Hardy's inequality (Lemma 1.8.11) and the fact that f** > f*
(since f* i8 non-increasing). For p > 1, the space L(p, c0) is known as the
Marcinkiewicz space and also as Weak LP. In case p = 1, we clearly have
L(1,00) = L!. With the help of Lemma 1.5.1, observe that

/f.(r)drztf-(:)+/oo ay(s)ds
o £t

and therefore

ar(py _ pe 17
)= (t)+t-/;.“)af(s)ds. (1.8.10)

For our applications it will be necessary to know how the non-increasing
rearrangement behaves relative to the operation of convelution. The next
two lemmas address this question. Because g** i3 non-increasing, note that
in the following lemma, the first and second conclusions are most interesting
when ¢ < r and t > r, respectively.

1.8.7. Lemma. Let f and g be measurable funciions on R™ where sup{ f(z):
z € R"} < a and f vanishes outside of a measurable set E with |E| = r.
Let h= fxg. Then, for t >0,

h**(¢) € arg®(r)



1.8. Lorentz Spaces 29

and
h**(t) < arg®™(¢).

Proof. For a > 0, define

_fe@ if lg(z)| < a
ga(z) = {asgng(.’r) if lz(z)l >a

and let
9*(z) = g() — ga(z).
Then, define functions &, and k2 by

h=fxg=f*ga+ fsg°
=hy + k.

From elementary estimates involving the convolution and Lemma 1.5.1,
we obtain

sup{ha(z) : z € R*} < sup{f(z): z € E}|l¢®|l, < a/oo ag(s)ds (1.8.11)

because g(z) = 0 whenever |g(z)| < a. Also
sup{k,(z) : z € R"} < ||f]l1sup{ga(z) : € E} < ara, (1.8.12)

and o

lhzlly < 1A llg®lh < ar / g (s)ds. (18.13)

Now set a = ¢*(r) in (1.8.11) and (1.8.12) and obtain

R (t) = %/ﬂ h*(y)dy < [[hlloo

< 1Brfleo + [lA2/loo

o0

<arg*(r)+ a/ ng(s)ds
9*(r)

<a [rg‘(r) + /00 ag(s)ds}
9°(r)
=arg*(r).

The last equality follows from (1.8.10) and thus, the first inequality of the
lemma is established.
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To prove the second inequality, set a = g°(r) and use (1.8.12) and (1.8.13)
to obtain

t ¢ t
the*(t) = /0 B (y)dy < /0 B (y)dy + /D k3 (y)dy

o0
< iy lloo + / By ()dy = thkalloo + A2y
0
oo

<targ"(t) + ar/ ag(8)ds
g*(r)

<ar [zg-(t) + /O: )ag(s)da]
g (r

<artg**(t)
by (1.8.10). 0

1.8.8. Lemma. If h, f, and g are measurable functions such that h = fxg,
then for any t > 0

R 000+ [ " [ (w)g” (u)du.

Proof. Fix t > 0.
Select a doubly infinite sequence {y;} whose indices ranges from —oo to
+00 such that
yo = f*(t)

Vi < Yig1

Itm y; = 00
1 —00

lim y; = 0.
$——00

Let -
fi2y= Y fil2)

where
0 if [£(2)] < i
fiz) = { f(2) —yic1sgn f(z) ifyio1 <|f(z)| <wi
¥ — ¥i-198n0 f(z) if yo < |f(2)]-
Clearly, the series converges absolutely and therefore,

h=f-g=(§mf.)*g

=hy+ ha
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with
h*(t) < RT°(t) + h3°(2).

To evaluate h3*(t) we use the second inequality of Leinina 1.8.7 with
Ei={z:|f(2)| > yi-1} = E and a = y; — y;—, to obtain

B3t (8) < (i — vn)ag(vi1)g™* (1)

t) Zaf(yi—l)(yu = ¥i-1)-

i=1

The series on the right is an infinite Riemann sum for the integral

_/ as(y)dy,
Fa0)

and provides an arbitrarily close approximation with an appropriate choice
of the sequence {y;}. Therefore,

By (1) < 97 () /f W (18.14)

By the first inequality of Lemma 1.8.7,

Ryt (¢ <Z(y.—y. a(i-1)9" (as(yi1))-

i=1

The sum on the right is an infinite Riemann sum tending (with proper
choice of y;) to the integral,

£ .
[ asts s
We shall evaluate the integral by making the substitution y = f*(u) and

then integrating by parts. In order to justify the change of variable in the
integral, consider a Riemann sum

[o o]
Z ay(yi-1)9"" (as(yi-1)) (% — %i-1)
i=1

that provides a close approxitnation to

£o ()
/0 s (v)g** (s (y))dy.

By adding more points to the Riemann sum if necessary, we may assurne
that the left-hand end point of each interval on which a; is constant is
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included among the y;. Then, the Riemann sum is not changed if each y;
that is contained in the interior of an interval on which ay is constant, is
deleted. It is now an easy matter to verify that for each of the remain-
ing y; there is precisely one element, u;, such that y; = f*(u;) and that
ay(f*(u;)) = u;. Thus, we have

E as(yi-1)9"* (es(yi-1)) (¥ — yi-1)

i=1

= 3 w1 () () - £ (5m0)

1=1
which, by adding more points if necessary, provides a close approximation
to

- [t warw.
Therefore, we have
Fo (e
By (8) < /o ar(1)g™ (ay (1)) dy
= / ” ug™ (w)df* ()
= —ug™ @)Wl + [ " 1 (u)g* (w)du
< tg™ ()" (t) + / " £ (w)g" (w)du (1.8.15)

To justify the integration by parts, let A be an arbitrarily large number
and choose u; such that ¢t = u4; < uz <... < u;;; = A Observe that

Mg NS () - g (OF7 (1) = 3 wir19™ (wea)[F (i) — ()]

i=1

J
+ Y L) (i Juigr — 97 (u)u]

=1

b]
= Zui+19"(ui+1){f°("-‘+|) - £ ()]
=1

+ gr(un I

j
< Z i 10" (i )" (1) — 7 (us)]

t=1

g (r )dr]

U TR
i
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+ 3 1 ()" (W ~ wil

i=1
This shows that
A A
Ag™ (M) (A) - tg™ (O)°(t) < / ug™ (u)df* (u) + / £ (w)g" (u)ds.
t {

To establish the opposite inequality, write

2™ (A F(A) - g™ () (t) = Eu.y () [f" (1) = F*(ws)]

7
+ Zf.(ul+l)[9..(ui+l)ui+l — g7 (u)uy)

3
= Zu.-g"(ui)[f'(uiﬂ) = f*(w))

i=1 J n
£ 3 1 i) [ / g'(r)dr]
i=1 Y

i
> wig (wlf " (in) — £ (wi)]

i=1

J
+ Y S (i) (i )i — w):

=1

Now let A — oo to obtain the desired equality. Thus, from (1.8.15), (1.8.14),

and (1.8.10),

By(t) + h3*(1) < (1) [tf‘(t) + /f :) a,(y)d,,] + / " 1 (e (w)du
<t (g0 + / " p () (w)du a

1.8.9. Lemma. Under the hypotheses of Lemma 1.8.8,
oo
R**(t) < / [ (u)g* (u)du.
¢
Proof. We may as well assume the integral on the right is finite and then

conclude
uli_{rgo uf** (u)g** (u) = 0. (1.8.16)
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By Lemma 1.8.8 and the fact that f* < f**, we have

RU(1) < L (09" () + / ” £ (w)g" (w)du

<y 0et @+ [ 17w W (18.17)
¢
Note that since f* and ¢g° are non-increasing,
2 ey = 217w - 1)

and y
g™ (4) = ¢° (1)

for almost all (in fact, all but countably many) u. Since f** and g*° are
absolutely continuous, we may perform integration by parts and employ
(1.8.16) and (1.8.17) to obtain

B (E) < 1 (g™ (1) + uf** (w)g™* (w)[5°
+ [ £ (%) — £ (g (u)du
- / [ () ~ ()" ()dhus

< [ 1w 5

We conclude this section by proving some lemmas that provide a coin-
parison between various Lorentz spaces. We begin with the following that
compares L” and L(p,p).

1.8.10. Lemma. If 1 <p < oo and 1/p+ 1/p' = 1, then
".f"p < ”f"(p.p) < p'”f”p-
Proof. Since f* < f**,

iz = [Turwpa - [werorg < [Ceerorg
= (”f”(p.p))p'
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The second inequality follows immediately from the definition of f**(¢) and
the inequality

[/(;w [z_lilz -/;z f(t)dt]” %} 1/p <y [_/ow[xl/pf(z)]v‘i_x]l/p

which is a consequence of the following lemma with r = p - 1. a
The next result is a classical estimate, known as Hardy’s inequality, which

gives information related to Jensen’s inequality (1.5.12). If f is a non-
negative measurable function defined on the positive real numbers, let

F(z)= %/: f(dt, z>0.

Jensen's inequality gives an estimate of the p** power of F; Hardy’s in-
equality gives an estimate of the weighted integrat of the p'* power of F.

1.8.11. Lemma (Hardy). If 1 < p < 00, r > 0 and f is a non-negative
measurable function on (0,00), then with F defined as above,

/o ” F(z)Pz* " ldz < (g)" /0 ” FO)PPT1dy,

Proof. By an application of Jensen’s inequality (1.5.12) with the measure
tr/p)=14s we obtain

([ ou) = ([ -omerne)

< (’.’)p_l z7(1-1/p) /z[f(t)]ptp—r—Hr/pdt_
(]

r

Then by Fubim's theorem,

/:o (/0: f(t)dt)?x"—ldz

p-1 o0 z
) / z-t-(r/p) (/ [f(t)]"t*’""*('/”dt) dr
0 0
p-1 (= o
) / [f(R)pepr /P (/ z—l-(r/p)dz) dt
o t

’;’)"/Dm[f(c)t]"t—"’dz. O

IA

"
A~ N~
L A
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The following two lemmas provide some comparison between the spaces

L(p,q) and L(p,r).
1.8.12. Lemma.
Yy
(1) < (g) 1.0 <e|/.,llf||(p.q)'

P /e = zt/p

Proof.
o -y dt
(o) = [ E/er=@ps
> [ opeeesn-tar
0 Z
> U--(z)]q/ tla/p)-144
0
= Ppriaypeatse,
q
The first inequality follows by solving for f**(z) and the second by ob-

1/q
serving that (g) < ¢/ < elle, )

1.8.13. Lemma (Cealderdn). If 1 < p< oo and 1 £ ¢ <r < 00, then

(t/@)—(1/7) .
) o < eI lpe-

q
1oy < (5

Proof.
("fll(p.r))r = -/0 [f”(z)]rx("/P)—ldz
= [T @rir @r o
0

0o l/q T
o q 011l (p,0) .
< [urwr l(;) Il—;’;] L1y

q (r/fg)-1
N (I_’) ("f"(p.q))r_q("f"(l’ﬂ))q‘

and the first inequality follows by taking the 7*" root of both sidcs. The
second follows by the same reasoning as in the previous lemma. a
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Exercises

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

Prove that if E C R™ is an arbitrary set, then the distance function
to E is Lipschitz with constant 1. That is, if d(z) = d(z, E), then
|d(x) —d(y)| < |z —y| for all z,y € R™.

(a) Prove that if E is a set with H*(E) < oo, then HA(E) = 0 for
every 8 > a.

(b) Prove that any set E C R" has a unique Hausdorff dimension.
See Remark 1.4.3.

Give a proof of Lemma 1.5.1. More generally, prove the following:
Let ¢:[0,00] — [0,00] be a monotonic function which is absolutely
continuous on every closed interval of finite length. Then, under the
conditions of Lemma 1.5.1, prove that

/n poudy= /owu(E:)w'(t)dt-

Prove that C*2({2) is a Banach space with the norm defined in Sec-
tion 1.1.

Let f € C°(R™) and T a distribution. Verify the Leibniz formula

D(fT) =Y ﬂl( D"fD"“’T
p<a

where we say 3 < a provided §; < a; for1 <i <n.

Prove that if T is a distribution and ¢ € CJ°(R"), then T * p €
C(R™) and D(T * ¢) = (DT) » ¢ where D denotes any partial
derivative of the first order. This may be accomplished by analyzing
difference quotients and using the fact that 7, (DT) = D(n,T).

Lemma 1.8.13 shows that if 1 <p<ooand 1 < ¢ < r < 00, then
L(p.g) C L(p,q) C L(p,r) C L(p, 00).
Give examples that show the above inclusions are strict.

As we have noted in Remark 1.4.3, the measure H” does not satisfy
the regularity property analogous to (1.4.5). However, it does have
other approximation properties. Prove that if A C R™ is an arbitrary
set, there exists a Gs-set G D A such that

H'(A) = H'(G).
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1.9.

1.10.

1.1l

1.12.

1.13.

1.14.

1. Preliminaries

It can also be shown (although the proof is not easy) that if A is a
Suslin set, then

HY(A) =sup{H"(K): K C A, K compact, H'(K) < oo}.
See [F4, 2.10.48].

Prove the statement that leads to (1.8.10), namely, if f € L'(R"),
then
t oo
/ Fi(r)dr = tf‘(t)+/ ag(s)ds.
Y fe(8)
Hint: Consider the graph of f and employ Lemma 1.5.1.

Another Hausdorff-type measure often used in the literature is Haus-
dorff spherical measure, H]. It is defined in the same manner as H"”
(see Definition 1.4.1) except that the sets A; are taken as n-balls.
Clearly, H?(E) < H](E) for any set E. Prove that H}(E) = 0
whenever H7(E) = 0.

Suppose u i8 a function defined on an open set 2 C R"™ with the
property that it is continuous almost everywhere. Prove that u is
measurable.

Using only basic information, prove that the class of simple functions
is dense in the Lorentz space L(p, q).

Let u be a Radon measure on R™. As an application of Theorem 1.3.6
prove that any open set I C R™ is essentially (with respect to ) the
disjoint union of n-balls. That is, prove that there is a sequence of
disjoint n-balls B; C U such that

p[u_ggi]:o.

Let u be a Radon measure on R™. Let I be an arbitrary index set
and suppose for each a € I, that E, is an u-measurable set with the

property that

) u{EaﬂB(x,r)}___
T WBEnl

for every x € E,. Prove that Uses By is p-measurable.

. From Exercise 1.1 we know that the distance function, d, to an arbi-

trary set K is Lipschitz with constant 1. Looking ahead to Theoremn
2.2.1, we then can conclude that d is differentiable almost everywhere.
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Prove that if £ is a closed set and d is differentiable at a point z & E,
then there exists a unique point £(z) € E nearest . Also prove that

1.16. (a) If f is a continuous function defined on R", prove that its non-
increasing rearrangement f* is also continuous. Thus, continu-
ous functions remain invariant under the operation of rearrange-
ment.

(b) Now prove that Lipschitz functions also remain invariant under
rearrangement. For this it will be necessary to use the Brunn-
Minkowski inequality. It states that if E and F are nonempty
subsets of R", then

IE +F|1/n > 'Ell/n + IFII/»

where E+ F={z+y:z€ E,yeF}.
(c) Looking ahead to Chapter 2, prove that if f € W!P(R"), then
f° € WHP(R™). Use part (b) and Theorem 2.5.1.

(d) Show by an example that C1(R") does not remain invariant
under the operation of rearrangement.

1.17. Let u € C°(R!). For each h # 0, let u, be the function defined by

u(z + k) — u(z)

up(z) = N

Prove that up, — #' in the sense of distributions.

1.18. Let {u,} be a sequence in LP(R") that converges weakly to u in
LP(R™), p > 1. That is,

lim yivdr — uvdr
100 JRn R

for every v € L® (R"). Prove that D®u, — D°u in the sense of
distributions for each multi-index a.

Historical Notes

1.2, The notion of measures has two fundamental applications: one can be
used for estimating the size of sets while the other can be used to define
integrals. In his 1894 thesis, E. Borel (cf. {[BO]) essentially introduced what
is now known as Lebesgue outer measure to estirate the size of sets to assist
his investigation of certain pathological functions. Lebesgue [LE1] used
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measures as a device to construct his integral. Later, when more general
measures were studied, Radon (1913) for example, emphasized measure
as a countably additive set function defined on a o-ring of sets whereas
Carathéodory (1914) pursued the notion of outer measures defined on all

sets.

1.3. The material in this section represents only a very small portion of the
literature devoted to differentiation theory and the related subject of cover-
ing theorems. Central to this theory is the celebrated theorem of Lebesgue
[LE2] which states that a locally integrable function can be represented
by the limit of its integral averages over concentric balls whose radii tend
to zero. Theorem 1.3.8 generalizes this result to the situation in which
Lebesgue measure is replaced by a Radon measure. This result and the
covering theorems (Theorems 1.3.5 and 1.3.6) which lead to it are due to
Besicovitch, [BE1), [BE2]. The proof of Theorem 1.3.5 waa communicated
to the author by Robert Hardt. The original version of Theorem 1.3.6 is due
to Vitali [VI) who employed closed cubes and Lebesgue measure. Lebesgue
(LE2] observed that the result is still valid if cubes are replaced by gen-
eral gets that are “regular” when compared to cubes. A sequence of sets
{Ex} is called regular at a point zo if zp € N2, Ex, diam(Ex) — 0 and
lim infx_.0 p(Ex) > 0 where p(E}) is defined as the infimum of the numbers
|C|/|Ex| with C ranging over all cubes containing Ey. In particular, one is
allowed to consider coverings by nested cubes or balls that are not neces-
sarily concentric. However, in the case when Lebesgue measure is replaced
by a Radon measure, Theorem 1.3.6 no longer remains valid if the balls in
the covering are allowed to become too non-concentric. At about the time
that Besicovitch made his contributions, A.P. Morse developed a theory
which allowed coverings by a general class of sets rather than by concentric
closed balls. The following typifies the results obtained by Morse [MSE2):
Let A C R" be a bounded set. Suppose for each x € A there is a set H(z)
satisfying the following two properties: (i) there exist M > 0 independent
of z and r(z) > 0 such that

B(z,7(z)) C H(z) C B(z, Mr(z));

(i) H(z) contains the convex hull of the set {y} U B(z,r(z)) whenever
¥ € H(x). Then a conclusion similar to that in Theorem 1.3.5 holds.

Another useful covering theorem due to Whitney [WH] states than an
open set in R™ can be covered by non-overlapping cubes that become
smaller as they approach the boundary. Theorem 1.3.5 is a similar result
where balls are used instead of cubes and where the requirement of disjoint-
ness is replaced by an estimate of the amount of overlap. This treatment
is found in [F4, Section 3.1).

Among the many results concerning differentiation with respect to irreg-
ular families is the following interesting theorem proved in [JMZ]: Suppose
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u is a measurable function defined on R" such that

/lul(l +log™ |u|)* ldz < .
Then, for almost every x € R",

tim |1 /I ju(y) - w()ldy = 0

where the limit is taken over all bounded open intervals I containing the
point z. This result is false if u is assumed only to be integrable. Such ir-
regular intervals are useful in applications concerning parabolic differential
equations, where it is natural to consider intervals of the form C x [0, %],
where C is an (n — 1)-cube of side-length r.

For further information pertaining to differentiation and coverings, the
reader may consult [DG], [F4, Section 2.8].

1.4. Carathéodory [CAY] was the first to introduce “Hausdorff” measure in
his work on the general theory of outer measure. He only developed linear
measure in R" although he indicated how k-dimensional measure could be
defined for integer values of k. k-dimensional measure for general positive
values of k was introduced by Hausdorff [HAU] who illustrated the use
of these measures by showing that the Cantor ternary set has fractional
dimension log 2/ log 3.

1.7. There are various ways of presenting the theory of distributions, but
the method employed in this section is the one that reflects the original
theory of Schwartz [SCH]) which is based on the duality of topological vector
spaces. The reader may wish to consult the monumental work of Gelfand
and his collaborators which contains a wealth of material on “generalized
functions” [GE1}, [GEZ2], [GE3], [GE4], [GES).

1.8. Fundamental to the notion of Lorentz spaces is the classical concept
of the non-increasing rearrangement of a function which, in turn, is based
upon a notion of symmetrization which transforms a given solid in R3
into a ball with the same volume. There are a variety of symmetrization
procedures including the one introduced by J. Steiner [ST] in 1836 which
changes a solid into one with the same volume and at least one plane of
symmetry. The reader may consult the works by Pélya and Szego [PS] or
Burago and Zalgaller [BUZ] for excellent accounts of isoperimetric inequal-
ities and their connection with symmetrization techniques. In 1950 G.G.
Lorentz [LO1], [LOZ2|, first discussed the spaces that are now denoted by
L(p, 1) and L(p, 0o). Papers by Hunt (HU] and O’Neil [O] present interest-
ing developments of Lorentz spaces. Much of this section is based on the
work of O'Neil and the main results of this section, Lemmas 1.8.7-1.8.9,
were first proved in [O]. The reader may consult [CA2], {CA3], {LP), [PE]
for further developments in this area.
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Sobolev Spaces and Their
Basic Properties

This chapter is concerned with the fundamental properties of Sobolev
spaces including the Sobolev inequality and its associated imbedding the-
orems. The basic Sobolev inequality is proved in two ways, one of which
employs the co-area formula (Section 2.7) to obtain the best constant in the
inequality. This method relates the Sobolev inequality to the isoperimetric
inequality.

The point-wise behavior of Sobolev functions will be discussed in Chap-
ters 3 and 4 and this will entail a method of defining Sobolev functions
on large sets, sets [arger than the complement of sets of Lebesgue measure
zero. It turns out that the appropriate null sets for this purpose are de-
scribed in terms of sets of Bessel capacity zero. This capacity is introduced
and developed in Section 2.6 but only to the extent needed for the analysis
in Chapters 3 and 4. The theory of capacity is extensive and there is a vast
literature that relates Bessel capacity to non-linear potential theory. It is
beyond the scope of this book to give a thorough treatment of this topic.

One of the interesting aspects of Sobolev theory is the behavior of the
Sobolev inequality in the case of critical indices. In order to gain a better
appreciation of this phenomena, we will include a treatment in the context
of Lorentz spaces.

2.1 Weak Derivatives

Let u € L}, (). For a given multi-index a, a function v € L} () is called

the o't weak derfvative of u if
/ pvdz = (—1) / uD%pdzx (2.1.1)
o 0

for all p € C3°(R). v is also referred to as the generalized derivative of u
and we write v = Dy, Clearly, D®u is uniquely determined up to sets
of Lebesgue measure zero. We say that the o' weak derwative of u 1s a
measure if there exists a regular Borel (signed) measure g on §2 such that

./tpdp=(—l)|al./ uD%pdz (2.1.2)
9 Q
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for all ¢ € C§°(Q). In most applications, |a| = 1 and then we speak of u
whose partial derivatives are measures.

2.1.1. Definition. For p > 1 and k a non-negative integer, we define the
Sobolev space

WEP(Q) = LP(Q) N {u: D®u € LP(N), |af < k). (2.1.3)

The space W* () is equipped with a norm

i/p
”u”k.p:ﬂ = / Z |Da7llpd1' (2.1.4)
lal<k
which is clearly equivalent to
Y- ID%ullya. (2.1.5)

laj<k

It is an easy matter to verify that W*?(Q) is a Banach space. The space
Wg"’(ﬂ) is defined as the closure of C5°(Q2) relative to the norm (2.1.4).
We also introduce the space BV (Q2) of integrable functions whose partial
derivatives are (signed measures) with finite variation; thus,

BV(Q) = L}(Q) N {u: D% is a measure, |D*u)(Q) < o0, |af = 1}.
(2.1.6)
A norm on BV () is defined by

lullay @)y = lullia + Z |D®u|(82). (2.1.7)

la=1

2.1.2. Remark. Observe that if u € W*?(Q) U BV (), then u is deter-
mined only up to a set of Lebesgue measure zero. We agree to call these
functions u continuous, bounded, etc. if there is a function % such that
u = u a.e. and U has these properties.

We will show that elements in W*(Q) have representatives that permit
us to regard them aa generalizations of absolutely continuous functions
on R!. First, we prove an important result concerning the convergence of
regularizers of Sobolev functions.

2.1.3. Lemma. Suppose u € W5P(Q), p > 1. Then the regularizers of u
(see Section 1.6), u,, have the property that

Lin Jtue — ullipinr = 0
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whenever ' CC . In case Q = R*, then lim¢—o ||ue — 4l = 0.
Proof. Since ' is a bounded domain, there exists ¢ > 0 such that ¢y <

dist(§Y',89). For ¢ < ¢y, differentiate under the integral sign and refer to
(2.1.1) to obtain for z € Q' and |a| < k,

D°uc(z) = e‘"/ Dgy (z ; y) u(y)dy
1)lele= / Djp (
= [ o (Z22) Doutoay

= (D%u).(x)
for each £ € . The result now follows from Theorem 1.6.1(iii). a

) u(y)dy

Since the definition of a Sobolev function requires that its distributional
derivatives belong to L?, it i8 natural to inquire whether the function pos-
sesses any classical differentiability properties. To this end, we begin by
showing that its partial derivatives exist almost everywhere. That is, in
keeping with Remark 2.1.2, we will show that there is a function % such
that @ = u a.e. and that the partial derivatives of & exist almost every-
where. However, the result does not give any information concerning the
most useful concept of total differential, the linear approximation of the
difference quotient. This topic will be pursited in Chapter 3.

2.1.4. Theorem. Suppose u € LP(Q?). Then u € WP(Q), p > 1, if and
only if u has a representative u that is absoluiely conlinuous on almost
all line segments in ) parallel to the coordinate azes and whose (classical)
partial derivatives belong to LP(Q).

Proof. First, suppose u € W?(2). Consider a rectangular cell in Q
R= [al,bll X... X [On,bn]

all of whose side lengths are rational. We know from Lemma 2.1.3 that the
regularizers of u converge to u in the Wl P(Q) norm. Thus, writing z € R
as r = (Z,z;) where £ € R*! and x; € [a;, 4], 1 < i < n, it follows from
Fubini's Theorem that there is a sequence {ex} — 0 such that
by
Yim [ un(Z,2:) ~ u(z, 70)|° + |Dun(3,2:) - Du(#,7.)[Pdz; = 0

-t 00 '
for almost all . Here, we denote u,, = uy. Since u; is smooth, for each
such £ and for every n > 0, there is M > 0 such that for b € [a;, b;],

by
|ux(Z,b) — ux(£,8:)) < / | Duy (%, x;)|dz;



2.1. Weak Derivatives 45

b,
S/ [Du(z,z)|dz; + 7
ay
for k > M. If {ux(Z,q;)} converges as k — oo, (which may be assumed
without loss of generality), this shows that the sequence {u;} is uniformly
bounded on [a;, ;). Moreover, as a function of z;, the u, are absolutely
continyous, uniformly with respect to k, because the L! convergence of
Duy to Du implies that for each ¢ > 0, there is a § > 0 such that
Jg |Dux(Z,7,)|dx; < € whenever H'(E) < 6 for all positive integers k.
Thus, by the Arzela-Ascoli theorem, {u;} converges uniformly on [a;, b;)
to an absolutely continuous function that agrees almost everywhere with
u. This shows that u has the desired representative on R. The general case
follows from the familiar diagonalization process.

Now suppose that u has such a representative T. Then Gy also possesses
the absolute continuity properties of @, whenever p € C§°(f2). Thus, for
1 <t < n, it follows that

/ﬁD,-gpd = —/D,mpdx

on almost every line segment in 2 whose end-points belong to R™ — spty
and is parallel to the itM coordinate axis. Fubini's Theorem thus implies
that the weak derivative D;u has D;u as a representative. c

2.1.5. Remark. Theorem 2.1.4 can be stated in the following way. If u €
LP(§2), then u € W1?(Q) if and only if u has a representative % such that
uz € WP(A) for almost all line segments A in  parallel to the coordinate
axes and {Du| € LP(R). For an equivalent statement, an application of
Fubini's Theorem allows us to replace almost all line segments A by almost
all k-dimensional planes A, in §2 that are parallel to the coordinate k-planes.

It is interesting to note that the proof of Theorem 2.1.4 reveals that
the regularizers of u converge everywhere on almost all lines parallel to the
coordinate axes. If u were not an element of W!?(£1), but merely an element
of L'(£), Fubini’s theorem would imply that the convergence occurs only
H'-a.e. on almost all lines. Thus, the assumption u € W'?(Q2) implies
that the regularizers converge on a relatively large set of points. This is an
interesting facet of Sobolev functions that will be pursued later in Chapter
3.

Recall that if u € LP(R"), then ||lu(z + h) —u(z)|lp, — O0as h — 0. A
similar result provides a very useful characterization of W1-?(R").

2.1.6. Theorem. Let 1 < p < oo. Then u € W'P(R") if and only if
u € LP(R") and
(/ u(z + h) — u(x)

P 1/p .
D=0 ) < it + 4 =
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remamns bounded for all h € R™.

Proof. First assume v € C§°(R"). Then

u(z + h) — u(x) "" ( ) h
——-——-—-—— = —dt,
W A / ‘W)

so by Jensen’s inequality (1.5.12),

wz+h)-u@))?_ 1 I ( i) P
— < |h|-/o Du I+t1h| dt.

Therefore,

gz + B) = u(=)I S"“"w/ . pu e+ 1)

lu(z + ) = u(z)ll, < |A || Dull,.

By Lemma 2.1.3, this holds whenever u € W ?(R"™).
Conversely, if ¢; is the ih ynit basis vector, then the sequence

{ u(z + e.l//ljc) - u(z) }

dzdt,

or

is bounded in L?(R*). Hence, by Theorem. 1.5.2, there exists a subsequence
(which will be denoted by the full sequence) and u; € LP(R") such that

u(z + e;[k) — u(z)
1/k T

weakly in LP(R™). Thus, for p € &,

/;n uipdzr = hm _/. [u(:z: ha eil/;;c) - u(r)] p(z)dx
= lim u(z) [W(z —eifk) - W(z)] dz

k—oo Rn l/k
= —/ uD;pdz.
This shows that
D.-u = U4
in the sense of distributions. Hence, u € W!?(R"). o

2.1.7. Deflnition. For a measurable function u: Q@ — R!, let

ut = max{%,0}, u~ = min{u,0}.
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2.1.8. Corollary. Let ue€ W'?(Q), p> 1. Then u*,u” € W'P(Q) and

Duif u>0
+ _
Du ‘{o i u<0

~_fo ifuxo0
Du _{Duil‘u<0.

Proof. Because u has a representative that has the absolute continuity
properties stated in Theorem 2.1.4, it follows immediately that u*,u~ €
W1P(Q). The second part of the theorem is reduced to the observation
that if f is a function of one variable such that f’ exists a.e., then (f*) =

' xqs>0- 0

2.1.9. Corollary. If Q is connected, u € W'P(Q), p > 1, and Du=0a.e.
on §Q, then u is constant on §.

Proof. Appealing to Theorem 2.1.4, we see that u has a representative
that assumes a constant value on almost all line segments in 2 parallel to
the coordinate axes. a

2.1.10. Remark. The corollary states that elements of W1?(f2) remain
invariant under the operation of truncation. One of the interesting aspects
of the theory is that this, in general, is no longer true for the space W*¥(Q).
Motivated by the observation that u* = H o u where H is defined by

te>0
H(‘)z{ozzo

we consider the composition H o u where H is a smooth function. It was
shown in [MA2] and [MA3] that it is possible to smoothly truncate non-
negative functions in W2?. That is, if H € C*(R') and

sup |[# T HU() < M < 00

for j = 1,2, then there exists C = C(p, M) such that for any non-negative
v € CP(R")
IDH(w)ll, < CID*vll,

for 1 < p < n/2 and any multi-index a with |a| = 2. Here D%y denotes the
vector whose components consist of all second derivatives of v. However,
it is surprising to find that this is not true for all spaces W*?, Indeed, it
was established in [DA1] that if 1 <p < n/k,2< k <n,orl <p< nfk,
k=2, and H € C*(R') with H¥)(t) > 1 for |t| < 1, then there exists a
function u € W5P(R") N C=(R™) such that H(u) g W*?(R"). The most
general result available in the positive direction is stated in terms of Riesz
potentials, I, * f (see Section 2.6), where f is a non-negative function in
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L?. The following result is due to Dahlberg [DA2]. Let 0 < a < n and
1 < p < n/a. Let H € C*°(R') have the property that

sup|t! THO (1) < M < o0
>0

for j = 0,1,...,a*, where a* is the smallest integer > a. If f € LP(R")
and f > 0, then there exists g € LP(R") such that

H(I,+g)=1I,%g ae.

and |glf, < ClIfIl, where C = C(a,p,n, M). The case of integral a was
treated in [AD4] and in this situation the result can be formulated as

ID7[H(La* Hill, < CISIF

for any multi-index y with |y| = %.

To continue our investigation of the calculus of Sobolev functions, we con-
sider the problem of composition of a suitable function with u € W1P(Q).
Before doing so, we remind the reader of the analogous problem in Real
Variable theory. In general, if f and g are both absolutely continuous func-
tions, then the composition, fog, need not be absolutely continuous. Recall
that a function, f, is absolutely continuous if and only if it is continuous, of
bounded variation, and has the property that | f(E)| = 0 whenever |E} = 0.
Thus, the consideration that prevents f o g from being absolutely continu-
ous is that fog need not be of bounded variation. A result of Vallée Poussin
[PO] states that f o g is absolutely continuous if and only if f/og g’ is
integrable. An analogous result is valid in the context of Sobolev theory, cf.
[MM1], [MM2], but we will consider only the case when the outer function
is Lipschitz.

2.1.11. Theorem. Let f : R® — R' be a Lipschitz function and u €
Wir(Q), p> 1. If fou € LP(N2), then fou€ W'P(Q) and for almost all
T€e,

D(f ou)(z) = f'[u(z)]- Du(z).

Proof. By Theorem 2.1.4, we may assunte that u is absolutely continuous
on almost all line segments in £2. Select a coordinate direction, say the
ith, and consider the partial derivative operator, D;. On almost all line
segments, ), in {2 parallel to the §*® coordinate axis, fou is clearly absolutely
continuous because f is Lipschitz. Moreover,

Di(f ou)(z) = f'[u(z)] - Diu(x) (2.1.8)

holds at all z € A such that D,u(z) and f’[u(z)] both exist. Note that if
Diu(z) = 0, then D;(f o u)(x) = 0 because

|Flulz + hes) = flu(@))] _ o, lu(z + hes) — u(z)|
Th] =M Al
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where M is the Lipschitz constant of f and e, is the i*® coordinate vector.
Thus, letting N = AN {x : Dyu(z) = 0}, we have that (2.1.8) holds on N,
Now let

P = (A = N)nN{z: Diu(z) exists and D;u(z) # 0}

and note that P U N occupies H!-almost all of A. From classical consid-
erations, we have that if $ C P and H![u(S)] = 0, then H!(5) = 0. In
particular, if we let E = {y : f'(y) fails to exist}, then H'[u"!(E)NP) = 0.
Since (2.1.8) holds if z € A - u”!(E) N P and D;u(z) exists, it follows
therefore that (2.1.8) holds at H'-almost all points of A. At all such z, we
may conclude that

[Di(f o u)(2)IP < MP|Dyu(z)P. (2.1.9)

Once it is known that the set of z € 2 for which (2.1.8) holds is a mea-
surable set, we may apply Fubini's Theorem to conclude that f o u sat-
isfies the hypotheses of Theorem 2.1.4. This is a consequence of the fact
that the functions on both sides of (2.1.8) are measurable. In particular,
f' o u is measurable because f' agrees with one of its Borel measurable
Dini derivates almost everywhere. 0

2.2 Change of Variables for Sobolev Functions

In addition to the basic facts considered in the previous section, it is also
useful to know what effect a change of variables has on a Sobolev function.
For this purpose, we consider a bi-Lipschitzian map

T:Q— .
That is, for some constant M, we assume that both T and T~} satisfy,
|T(z) - T(y)| < Miz—y|, forallz,yeq,

T71 ) -T ' (y) <Mz’ —y/|, forallz’,y' e (2.2.1)
In order to proceed, we will need an important result of Rademacher which
states that a Lipschitz map T: R* — R™ is differentiable at almost all
points in R"™. That is, there is a set E C R™ with |E| = 0 such that for
each £ € R™ — E, there is a linear map dT(z): R® — R™ (the differential
of T at z) with the property that

i (LE+9) ~T(z) ~dT(z,9)| _ o
y—0 |yl

(2.2.2)
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In order to establish (2.2.2) it will be sufficient to prove the following
result.

2.2.1. Theorem. [f f: R® — R! is Lipschitz, then for almost all z € R™,

g L&V = f@) -Di@) -y _ o
y—0 |yl

Proof. For v € R® with |v| =1, and z € R", let y(t) = f(z + tv). Since f
is Lipschitz, v is differentiable for almost all ¢t.

Let df(x,v) denote the directional derivative of f at x. Thus, df(z,v) =
7' (0) whenever ¥'(0) exists. Let

N, = R* N {z : df (z,v) fails to exist}.

Note that

N, = {z : limsupw
t—0

f(r+t")—f(z)}

> liminf
t—0 t

and is therefore a Borel measurable set. However, for each line A whose
direction is v, we have H'(N, N A) = 0, because f is Lipschitz on A.

Therefore, by Fubini’s theorem, |N,| = 0. Note that on each line A parallel
to v,

J @@y = - [ f@oz v)ds
A A

for ¢ € C§°(R"). Because Lebesgue measure remains invariant under or-
thogonal transformations, it follows by Fubini's Theorein that

df (z, 0)pl(z)dz = / f(z)de(z, v)dz
Re Rn

=- / f(z)Do(z) - vdz
R'l

X | 1©Ds0(@)- v, dz

-3 [ Ditae@) vy ds
= -/R" @(z)Df(z)-vdx.

Because this is valid for all p € C§°(R"), we have that

df(z,v)=Df(z)-v, ae z€R" (2.2.3)
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Now let vy, v2,... be a countable dense subset of S®~! and observe that
there is a set £ with |E| = 0 such that
df(z,v) = Df(z) - ue (2.2.4)

forallre R"-E , k=1,2,....
We will now show that our result holds at all points of R® — E. For this
purpose, let x € R* — E, ju| = 1, t > 0 and consider the difference quotient

Qz,v,t) = flz+ tvt) = /(z) ~Df(z) v

For v,v' € S"~! and t > 0 note that

[f(z +tv) — f(z +tv') + (v - v')- Df(x)]
t
< My -] +]u—v'|-[Df(@)| < M(n+ Dlv - o'| (2.2.5)

where M is the Lipschitz constant of f. Since the sequence {v;} is dense in
S™~1 there exists an integer K such that

1Q(z,v,t) - Q(z,v',t)| =

|v— vl < for some k € {1,2,...,K} (2.2.6)

3
An+ )M

whenever v € S*~!. For o € R" — E, we have from (2.2.4) the existence
of 8 > 0 such that

|Q(x0,vk,t)[<§ for 0<t<é, ke{1,2,. .., K) (2.2.7)

Since

IQ(z(]s v, t)[ S |Q(10)vk1t)| + IQ(IO'UI t) - Q(xﬂavks t)’
for k € {1,2,...,K}, it follows from (2.2.7), (2.2.5), and (2.2.6) that

€ €
|Q(zo, v, t)| < 2 + 3¢

whenever [v] =1 and 0 < £ < 6. o

Recall that if L: R® — R" is a linear mapping and E C R" a measurable
set, then

|L(E)| = | det L{ | E}.

It is not difficult to extend this result to more general transformations.
Indeed, if T: R® — R™ is Lipachitz, we now know from Theorem 2.2.1
that T has a total differential almost everywhere. Moreover, if T is also
univalent, one can show that

H"T(E)} =/ JT dz for every measurable set E, (2.2.8)
E
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where JT is the Jacobian of T. From this follows the general transformation

formula
/ foTJTdz = / fdr (2.2.9)
E T(E)
whenever f is a measurable function. We refer the reader to {F4; 3.2.3| for
a proof.

We are now in a position to discuss a bi-Lipschitzian change of coordi-
nates for Sobolev functions.

2.2.2. Theorem. Let T: R® — R" be a bi-Lipschitzian mapping as in
(2.2.1). If ue WP(Q), p> 1, thenv=uoT € W'P(V), V = T}(Q),
and

Du[T(z)]-dT(z,£) = Dv(z) - € (2.2.10)

for a.e £ € and for all £ € R".
Proof. Let u, be a sequence of regularizers for u, defined on Q' CC £, (see

Section 1.6). Then v, = u. o T is Lipschitz on V' = T~}(Q') and because
v, is differentiable almost everywhere (Theorem 2.2.1), it follows that

n
Dive(z) = Y D,u.[T(z))DiT* (z) (2.2.11)
i=1
for a.e. r € V'. Here we have used the notation T = (T?,T?,...,T") where

the T7 are the coordinate functions of T. They too are Lipschitz. (2.2.11)
holds at all points x at which the right side is meaningful, i.e., at all points
at which T is differentiable. If M denotes the Lipschitz constant of T, we
have from (2.2.11) that

{Dve(2)] < n®M|Du,[T(z)]| for ae.z € V', (2.2.12)
In view of the fact that
M™ < JT(x) < M* forae z € R",
(2.2.12) implies that there exists a constant C = C(n, M) such that
|Dve(z)|? € C|Du,[T(2)]|? - JT(z), a.e. z,

and therefore

/ |Dve|Pdz < C / | Due Pdz
! Q

from (2.2.9). A quick review of the above analysis shows that in fact, we
have
/ |Dv, — Dv,/|Pdz < C/ |Due — Du,:\Pdz. (2.2.13)
v )
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Also,
|ve — ver|Pdx < C/ |ue ~ e [Pdz. (2.2.14)
v !

From 2.2.11 we see that the regularizers u, converge to u in the norm of
W17(Q') whenever ' CC Q. Thus, (2.2.13) and (2.2.14) imply that {u,}
is a Cauchy sequence in W!?(Q'), and thus converges to some element
ve WlP(V') with

"”lll.p:V’ < C"unlm;n' < C"“"l.p;ﬂ- (2-2-15)

Since u,(z) — u(z) for a.e. x € 0, it is clear that v is defined on V with

= uo T. Moreover, v € W'P(V') whenever V' CC V and (2.2.15) shows
that, in fact, v € WLP(V). Finally, observe that (2.2.10) holds by letting
e — 0in (2.2.11). D

2.3 Approximation of Sobolev Functions by
Smooth Functions

From Theorem 1.6.1, we see that for each u € W¥»?(Q), there is a sequence
of C§°(Q) functions, {uc}, such that u, — u in W*2(Q') for ' CC Q. The
purpose of the next important result is to show that a similar approximation
exists on all of §2 and not merely on compact subsets of €.

We first require a standard result which concerns the existence of a C*
partition of unity subordinate to an open cover.

2.3.1. Lemma. Let E C R" and let G be a collection of open sets U such
that E C {UU : U € G}. Then, there ezists a family F of non-negative
Junctions f € Cg°(R") such that 0 < f < 1 and

(i) for each f € F, there erists U € G such that spt f C U,

(ii) #f K C E is compact, then spt f N K # 0 for only finilely many
feF,

(i) 3yex f(x) =1 for each z € E.

Proof. Suppose first that E' is compact, so that there exists a positive
integer N such that E C UN\U;, U; € G. Clearly, there exist compact sets
E; C U; such that E C UY,E;. By regularizing xg,, the characteristic
function of E;, there exists g; € C$°(U,) such that g; > 0 on E;. Let g =
):?;1 ¢i and note that g € C°°(R") and that ¢ > 0 on some neighborhood of
E. Consequently, it is not difficult to construct a function A € C°°(R") such
that A > 0 everywhere and that h = g on E. Now let F = {f; : fi = gi/h,
1 < i < N} to obtain the desired result in case E is compact.



54 2. Sobolev Spaces and Their Basic Properties

If E is open, let
E; = EnDB(0,i)n {z : dist(z,8E) > %} )

Thus, E; is compact and E = U2, E,. Let G; be the collection of all open

sets of the form
Uun {int Ei+l - E.'_Q}

where U € G. (We take Ep = E_, = 0). The elements of G, provide an
open cover for E; — int E,_; and therefore possess a partition of unity F;
with finitely many elements. Let

s(x)=Y Y g(x)
i=1 g€ ¥,

and observe that only finitely many positive terms arc represented and that
s(x) > 0 for z € E. A partition of unity for the apen set E is obtained by
defining

F= f.f(r)=f-}3forsomeg€f,-ifzeE,
"1 T fmy=0 if z¢E.

If E C R" is arbitrary, then any partition of unity for the open set
{UU : U € G} provides one for E. O

Clearly, the set
§=CH) N {u: ullepn < oo}

is contained in W?(Q2) and therefore, since W*?(Q) is complete, § C
WEkP(Q). The next result shows that § = W*»(Q).

2.3.2. Theorem. The space
CoEO) N {u: |lullspa < oo}
is dense in W*P(Q).

Proof. Let Q; be subdomains of 2 such that Q; CC Q,4, and U2,Q; = Q.
Let F be a partition of unity of Q subordinate to the covering {Q;+,—Q;_1},
i=0,1,..., where 2y and Q_, are taken as the null set. Thus, if we let f,

denote the sum of the finitely many f € F with spt f C Q41 — ;_,, then
fi € C(Qusr — Nioy) and

Y =1 on Q. (2.3.1)
i=1



2.4. Sobolev Inequalities 55

Choose £ > 0. For u € W¥2((), there exists ¢; > 0 such that
spt ((fiv)e,) € Qi1 — Qi (2.3.2)

N(firs)e, = fitllepin < €27°.

With v; = (fit)e,, (2.3.2) implies that only a finite number of the v; can
fail to vanish on any given ' CC 0, and therefore v = E:’il v; is defined
and belongs to C*°(Q). For z € §);, we have

u(z) = Y fi(=)u(z),

=1

u(z) = Y (fiw),(z) by (23.2)

3=1
and consequently,

1]
e = vllepa, < I N(Fiw)e, — frullkpa <.

i=1

The conclusion follows from the Monotone Convergence theorem. a

The approximating space C°(2) N {u : |[ullx p:n < o0} admits functions
that are not smooth across the boundary of Q and therefore it is natural to
ask whether it is possible to approximate functions in W*?(Q2) by a nicer
space, say _

C=(Q) N {u : JJullk p.a < 00}. (2.3.3)
In general, this is easily seen to be false by considering the domain 2 defined
as an n-ball with its equatorial (n—1)-plane deleted. The function u defined
by 4 = 1 on the top half-ball and 4 = —1 on the bottom half-ball is clearly
an element of W*?(2) that cannot be closely approximated by an element
in (2.3.3). The difficulty here is that the domain lies on both sides of part
of its boundary. If the domain {2 possesses the segment property, it has
been shown in [AR2, Theorem 3.18] that the space (2.3.3) is then dense in
W¥&P(Q). A domain Q has the segment property if for each z € 99, there is
anr > 0 and a vector v, € R" such that if y € QN B(z,r), then y+tv; € N
forall0<t<1.

2.4 Sobolev Inequalities

One of the main objectives of this monograph i8 to investigate the many
inequalities that allow the LP-norm of a function to be estimated by the
norm of its partial derivatives. In this section the Sobolev inequality, which
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is of fundamental importance, will be established for functions in the space
WDl P(€2). We will return to the topic of Sobolev-type inequalities in Chapter
4.

2.4.1. Theorem. Let  C R*, n > 1, be an open domain. There is a
constant C = C(n,p) such that if n > p, p > 1, and u € Wy P(Q), then

”u"np/(n—p);n < C"D'U."p;ﬂ-
If p > n and Q bounded, then u € C()) and
supu| < C|9f/*~V/?|| Dul|p.q.
0

Proof. First assume that u € C§°(R?) and that p = 1. Clearly, for each ¢,
1<i<n,

i
|u{z)] 5/ |Diu(zy, ... t,. .., z.)|dt

where ¢ occupies the i*! component of the vector in the integrand. Therefore

1/n=1
lu(z)[/" < (H/ |Du|dx,) . (2.4.1)

If this inequality is integrated with respéct to the first variable, z,, and
then Holder’s inequality is applied, we obtain

+00
/ lu(z)|™/ " Ydz,
—00
) 1/(n=1}
(/ |D1u(t zz,...,z,,)|dt)

/ (/ | Diu|dz; )l/(n_l)dzl

t/(n-1)
(/ |D1u(t,zg,...,z")|dt)
n o poo 1/(n-1)
H(/ / [D,—u|dz,~drl) : (24.2)
i=3 W TS —oo

Continuing this procedure and thus integrating (2.4.1) successively with
respect to each variable, we obtain

/.. |u(z)|™/ "~ Ddz < ﬁ (,/,;.. |D,u|dz)u(n_l)

i=1

IA

IA
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and therefore, using the fact that the geometric mean is dominated by the
arithmetic mean,

1 n
(Ma))* < ~3"a;, 20,
=1

we have

n

1/n n
1
Mallnjin—1y < H (/ﬂn ID.'uld:r) < ;/m E | Diu|dz
i=1

< {l_ﬁuuuul. (2.4.3)

This establishes the result in case p = 1. The result in full generality can
be obtained from {2.4.3) by replacing |u| by powers of |u]. Thus, if g > 1,

1169 lagnoy < Y2 2 [ ingunias

<’ / |9~ | Dujdz

< 2y jjery, | Dul,

by Holder's inequality. Now let ¢ = (n — 1)p/(n — p) to obtain the desired
result for the case 1 < p < n and u € C§°(R). Now assume u € Wy'?(9)
and let {ui} be a sequence of functions in Cg°(f2) converging to u strongly
in W0 'P(2). Then, with p* = np/(n — p), an application of the inequality
to u; — u; yields
liui — ujllpe < Cllui — w1l p-

Thus, u; — u in L’ () and the desired result follows. This completes the
proof in case 1 < p < n.

In case p > n and 2 bounded, let {u;} be a sequence such that u; €
C3e(2) and u; — u W'?(Q). The proof is thus reduced to the case when
u € C§°(RR). Now select x € R™ and because u has compact support, note
that

lu(z)] < A \Du(r)dir r) (2.4.4)

where )_ is any ray whose end-point is z. Let S"~!(z) denote the (n — 1)-
sphere of radius 1 centered at x and denote by A;(8) the ray with end-point
T that passes through 6, where 8 € S"~'(z). By integrating (2.4.4) over
S"~!(z) we obtain

n—-1 é
./;‘n-l(z) 'U(I)ldH ( ) = [Sn-l(z)
. / |Du(r)|dH (r)dH"~* (8)
A:(8)
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___/ / |Du(r)'rn—ldHl(r)dHn—l(o)
Sn-1(z) /2. (0)

yn—1

- / _DsW)l_, (2.4.5)
R

oz —y*!

where r = |z — y|. Thus, for any r € R™,

t/p
oo = Dl < 10uly ([ p-al0ay) L @as)

ptu

where w(n — 1) = H™~![S"~!]. We estimate the potential on the right side
of (2.4.6) in the following way. Let B(z, R) be the ball such that |B(z, R)| =
|spt u}. Observe that for each y € spt u — B(z, R) and z € B(z, R) — sptu,
we have

|z — | < |z — )

and because |sptu — B(z, R)| = |B(z, R) — spt u/, it therefore follows that

/ |z -y~ dy < / |z — y| =P dy.
sptu—B(z,R) B(z,R)-sptu

Consequently,

/ |z — |t dy < / g =y dy, (2.4.7)
aptu B(z

However,

1/p
(/ Iz—yl“-"”'dv) = (v~ a(n)R")M* (2.4.8)
B(z,R)

where 7 = (1 — n)p’ + n and a(n) is the volume of the unit n-ball. But
a(n)R™ = |spt u| and therefore

(a(n)RY)'? = o(=1/"[spty|/n=V/P, (2.4.9)

The second inequality of the theorem follows from (2.4.9), (2.4.8), and
(2.4.6). To show that u € C(Q) when p > n, let {u;} € C(?) be a
sequence converging to u in W,'?(Q2). Apply the second inequality of the
theorem to the difference u; — u; and obtain that {u;} is fundamental in
the sup norm on 2. m]

The first part of Theorem 2.4.1 states that the LP’ norm of u can be
bounded by ||u||1,p, the Sobolev norm of u, where p* = np/(n — p). It is
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possible to bound a higher L? norm of u by utilizing higher order deriva-
tives of » as shown in the next theorem. Observe that the proof is slightly
different from that of Theorem 2.4.1 in case k =1, p > n.

2.4.2. Theorem. Let 2 C R"™ be an open set. There is a constant C =
C(n,k,p) such that if kp<n,p>1,and u € W;‘-P(n), then

llu|
If kp > n, then v € C(Q) and

p*@t < Cllullk,pi2, where p* = np/(n — kp). (24.10)

k-1
sup |u) < C|KMP' Z (diam K))""l,”D“uu,,;x
& Jai=0 o

. e 1 a7
+ (diam(K)) TR (k p) |1 D*ullp;x (2.4.11)
where K = sptu and C = C(k,p,n).

Proof. When kp < n, the proof proceeds by induction on k. Observe that
Theorem 2.4.1 establishes the case k = 1.
Now assume for every v € W:_l"’(ﬂ) that

kg, < Cllvlli-r,p (2.4.12)
where
qk—1 = np/(n—kp + p).
An application of (2.4.12) to v = Dju, 1 < j < n, yields

1D;ullqe_. < CliDjulle-1p < Cllullxp- (2.4.13)

However, {2.4.12) holds with v replaced by u and this, combined with
(2.4.13), implies
Nl qe—, < Cllullx,p- (2.4.14)

Since kp < n, we have gx—; < n and therefore, Theorern 2.4.1 implies
lulle < Cllullig-, (2.4.15)

where ¢ = ngy_;/(n — gk—1) = np/(n — kp). (2.4.14) and (2.4.15) give the
desired conclusion.
In order to treat the case kp > n, first assume u € C§°(€2) and for each
y € Q use the Taylor expansion of u to obtain, with the notation of Seetion
1.1,
u(y) = Fz(y) + R(y)
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where

k-1
Py)= Y —D%u@)y - 2)°
|a=0
and
1 1
R:(y) =k Z o [/ (1 -t 1D%u((1 - t)z + ty)dt| (y — z)°.
' 0

lal=k

To estimate |u(y)|. note that

K] lu(y)] < /K 1P ()] + |Ra(v)]} dz (2.4.16)

and employ Holder’s inequality to obtain

k-1
l a o
/KIP:(y)Idx < /K > —Du(z)(y - 1)) dz
ja{=0
k-1 1
< |K|Ve Z(diamK)l"'aIlD“u[{p;x. (2.4.17)
jal=0

Similarly, to estimate the remainder term, we have

. - -
[ Retwite < @ity 3 % [ [ -0k

la|=k
- | D%u((1 - t)x + ty)|dzdt

1
< (diam(K))*k 37 $/D L (-t —)n

la|=k
- |D™u(z)|dzdt,
where K, = T, (K) and Ty(z) = (1 —t)x + ty. Note that |K,| = (1 —¢)"|K].
Consequently, by Holder’s inequality and kp > n, we obtain

-/Kle(y)ldIS K|/ (diam(K)Y*k S %

|a)=k

1
./ (- t)k_l(l - t)—""Da“"p;K(l - t)"/p'dt
0

-1
< |K|M?' (diam(K))*k Y ﬁ(k - 2) D% ullp:c.,
ja)=k P

which, along with (2.4.16) and (2.4.17), establishes the desired inequality.
Ifue W:"(Q), let {u;} be a sequence of smooth functions converging to
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u in Wé"p(ﬂ). The application of (2.4.1) to each u; thus establishes the

inequality for u € WEP(Q). To conclude that u € C%(0), apply (2.4.11) to
the difference u; — u; and obtain that {u;} is fundamental in the sup norm
on Q. o

2.4.3. Remark. An important case to consider in the previous two the-
orems is 2 = R™. In this situation, W*?(R") = WF"P(R") (see Exercise
2.1) and therefore the results apply to W*P(R").

Observe that for p > n, the proof of Theorem 2.4.1 as well as that of
Theorem 2.4.2 yields more than the fact that u is bounded. Indeed, u is
Holder continuous, which we state as a separate result.

2.4.4. Theorem. If u € WaP(), p > n, then u € C*2(Q), where a =
1-n/p.

Proof. Assume u € CJ}(2) and select r € Q. Let B = B(z,r) be an
arbitrary ball and choose z € BN ). Then,

ju(z) - u(2)] < / \Du(r)|x5(r)dH"(r)

where A (6) is the ray whose end-point is z and passes through the point
8, 6 € S*~!(xz). Proceeding as in (2.4.5) and (2.4.6), we obtain

/9
o= iute) = @ < 10wl ([ Jo=sl=ay) © (2a18)

But,
! llpl !
( /B lz =yt du) = (v a(n)) /7 i/

where v and a(n) are as in (2.4.8). Since the smooth functions are dense
in Wy'?(£2), we find that (2.4.18) holds for u € Wy'?(f2) and for almost all
r, z. a

An interesting aspect of the Sobolev inequality is the limiting case kp =
n. This will be considered separately in Chapter 2, Section 2.4.

2.5 The Rellich-Kondrachov Compactness
Theorem
As a result of the inequalities proved in the previous section, it follows

that the Sobolev spaces Wé"”(ﬂ) are continuously imbedded in L* ()
where p* = np/{n — kp), if kp < n. In case kp > n, the imbedding is
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into the space C%(Q), and if kp > n + mp, it can casily be shown that
the imbedding is into C™(§). In this section it will be shown that the
imbedding possesses a compactness property if we allow a slightly larger
target space. Specifically, we will show that the injection map from Wa P(2)
into either LI(Q), ¢ < p*, or C™ () has the property that the closure of an
arbitrary closed set in W:’p(Q) is compact in the range space. That is, the
image sets are precompact. We recall here that a set S in a metric space
is said to be totally bounded if for each ¢ > 0, there are a finite number of
points in S such that the union of balls of radius ¢ with centers at these
points contains S.

2.5.1. Theorem. Let 2 C R™ be a bounded domasn. Then, if kp < n and
p>1, WEP(R) is compactly imbedded in LI(S2) where g < np/(n - kp). If
kp > n + mp, W;"(Q) i3 compactly imbedded in C™(Q).

Proof. Consider the first part of the theorem and let B C Wy ?(Q) be
a bounded set. We will show that B is a compact set in L%(Q). Since
Cge(N) is dense in W:*’(Q), we may assume without loss of generality that
B C C§°(92). For convenience, we will also assume that ||u|lx,p;0 < 1 for all
u € B.

For ¢ > 0, let u, be the regularization of u. That is, u, = u * ¢, where
e 18 the regularizer (see Section 1.6). If u € B, then

Jue(z)] < /B lu(z - p)lee(y)dy

0-
< e " sup ol
<e "sup{p(y):y € R},
and

|Due(z)] < / o, 182 = 0Dy

0,c)

< e 'sup{|Dy(y)l : y € R"}Hjully
< e tsup{|Dyp(y)| : y € R"}.

Therefore, if we let B, = {u, : 4 € B}, it follows that B, is a bounded,
equicontinuous subset of C°({2). With the help of Arzela’s theorem, it fol-
lows that B, is precompact in L}(f2). Next, observe that

lu(z) - ue(z)| < ] lu(z) — u(z - v)lee(y)dy

B(0,)

1
o v(t) - ¥ ()] e () dtd
S/B(O'C)_/; |Du o y(t) - ' (t)|pe (y)dtdy

1
< / ] Du(z — ty) lylve (v)dedy
B(0,e) Jo
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where ¥(t) = ¢(z — y) + (1 — t)z = = — ty. Consequently, Fubini’s theorem
leads to

[ @) - uetapaz < [ B / ’ [ 1Dute - ) el (daatay

< 5/ |Du|dx < €.
0

Thus, B is contained within an e-neighborhood of B, in L'((2). Since B, is
precompact in L!'() it is totally bounded. That is, for every r > 0, there
exist a finite number of balls in L!(2) of radius r whose union contains
B.. Hence, B is totally bounded and therefore precompact in L!(€2). This
establishes the theorem in case ¢ = 1.

If 1 < g < np/(n — kp), refer to (1.5.13) to obtain

1-x
lullg < Nell2Hely, i —p)
where

5= Ma~-(n—kp)/np
1-(n—kp)/np

Then, by Theorem (2.4.2)

Mg 1=A
lullg < Clluliyllull;

which implies that bounded sets in Wé“”(Q) are totally bounded in L(f2)
and therefore precompact.

The second part of the theorem follows iminediately from Theorem 2.4.4
and Arzela’s theorem in case k = 1. The geueral case follows fron repeated
applications of this and Theorem 2.4.1. a

2.5.2. Remark. The results of Sections 2.4 and 2.5 are stated in terms
of functions in W(f"’ {©). A natural and inportant question is to identify
those domains 2 for which the results are valid for functions in W*#(Q).
One answer can be formulated in terms of those dornains of {2 having the
property that there exists a bounded linear operator

L:W*5?(Q) - wkr(R™) (2.5.1)

such that L{u)|a = u for all u € W¥*P(QQ). We say that Q is an (k,p)-
extension doman for W¥P(Q) if there exists an exteusion operator for
WkEP(Q) with 1 < p < o0, k a non-negative integer. We will refer to
this definition extensively in Chapter 4, and if the context makes it clear
what indices k£ and p are under consideration, for brevity we will use the
term extension domain rather than (k, p)-extension domain. Clearly, the
results of the previous two sections are valid for u € W*P(QQ) when Q2
is a2 bounded extension domain. Indeed, by Lemma 2.3.1 there exists a
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function f € CS°(R™) such that f =1 on Q. Thus, if u € WkP(R), then
f-L(u) € W:“’(Q’) where € is some bounded domain containing spt f. It
is now an easy matter to check that the results of the previous two sections
are valid for the space W*?(Q) by employing W;'p(Q’).

A fundamental result of Calderén-Stein states that every Lipschitz do-
main is an extension domain. An open set Q2 is a Lipschitz domain if its
boundary can be locally represented as the graph of a Lipschitz function de-
fined on some open ball of R"~!. This result was proved by Calderén [CA1]
when 1 < p < n and Stein [ST] extended Calderén’s result to p = 1,00.
Later, Jones [JO] introduced a class of domains that includes Lipschitz
domains, called (£,4) domains, which he proved are extension domains
for Sobolev functions. A domain {2 is called an (¢, 6) domain if whenever
z,4 € R® and |r — y| < &, there is a rectifiable arc v C §Q joining z to y
and satisfying

lengthy < e '|x -y
and
ez — z|ly — z|
|z -l
Among the interesting results he obtained is the following: If @ C R? is
finitely connected, then € is an extension domain if and only if it is an
(¢,6) domain for some values of €,6 > 0.

d(z,R" -9Q) >

for all z on 7.

2.6 Bessel Potentials and Capacity

In this section we introduce the notion of capacity which is critical in
describing the appropriate class of null sets for the treatment of pointwise
behavior of Sobolev functions which will be discussed in the following chap-
ter. We will not attempt a complete development of capacity and non-linear
potential theory which is closely related to the theory of Sobolev spaces,
for these topics deserve a treatment that lies beyond the scope of this expo-
sition. Instead, we will develop the basic properties of Bessel capacity and
refer the reader to other sources for further information, cf. [HM], [ME1],
[ADS].
The Riesz kernel, I,, 0 < a < n, is defined by

Ia(z) = v(e) 7 |z|*~"

where 12 (
_ w22 (af2)
@) = Tz —as2)
The Riesz potential of a function f is defined as the convolution
1 / fly)dy

v(a) Jpa |z —y|"~

I.x f(z) =
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The precise value of y(a) is not important for our purposes except for the
role it plays in the Riesz composition formula:

InxIg=larg, a>0,0>0, a+f<n

cf. [ST, p. 118].

Observe that I, « f is lower semicontinuous whenever {f > 0. Indeed, if
z; — 7, then [z; —y|* " f(y) — |z — y|* " f(y) for all y € R™, and lower
semicontinuity thus follows from Fatou’s lemma.

The Riesz potential leads to many important applications, but for the
purpose of investigating Sobolev functions, the Bessel potential is more
suitable. For an analysis of the Bessel kernel, we refer the reader to [ST,
Chapter 5} or [DO, Part III} and quote here without proof the facts relevant
to our development.

The Bessel kernel, go, @ > 0, is defined as that function whose Fourier

transform is
gal(x) = (27)"2(1 + |z|*)" 2/

where the Fourier transform is
f@) = @ [ e pwa. (2.6.1)

It is known that g, is a positive, integrable function which is analytic except
at £ = 0. Similar to the Riesz kernel, we have

9a * 98 = gasp, @, B 20. (2.6.2)

There is an intimate connection between DBessel and Riesz potentials
which is exhibited by g, near the origin and infinity. Indeed, an analysis
shows that for some C > 0,

ga(z) ~ C|z|V/Da-m-1e=I2l a5 7] — o0

Here, a(x) ~ b(z) means that a(z)/b(z) is bounded above and below for
all large |z{. Moreover, it can be shown that

xlﬂ—n

_| .
fa(z) = T +o(lel* ) 2 [e] 0

if 0 < a < n. Thus, it follows for some constants C) and Cj, that
Cy _c
ga(a:) S WC 242} (263)
for all z € R™. Moreover, it also can be shown that

C -
|Dga(z)| < I-IT"_%;IB Cals), (2.6.4)
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From our point of view, one of the most interesting facts concerning
Bessel potentials is that they can be employed to characterize the Sobolev
spaces W5P(R"). This is expressed in the following theorem where we
employ the notation

L*?(R"), a>0,1<p<x
to denote all functions u such that
u=ga+f

for some f € LP(R"™).
2.6.1. Theorem. If k 1s a positive integer and 1 < p < 00, then

LFP(R™) = WEP(R™).
Moreover, if u € L*P(R™) with u = gq * f, then

C S llp < Nellep < Cf Nl

where C = C(a,p,n).
Remark. The equivalence of the spaces L*? and W*-? fails when p = 1 or
? Tt?:.also interesting to observe the following dissimilarity between Bessel

and Riesz potentials. In view of the fact that [jga]ls < C, Young's inequality
for convolutions implies

"9a * f"p < C"f"pa 1<p<Loo. {2:6.5)

On the other hand, we will see in Theorem 2.8.4 that the Riesz potential
satisfies

Mo fllg < Cllfllyy 2>1 (2.6.6)

where ¢ = np/(n — ap). However, an inequality of type (2.6.6) is possible
for only such g, cf. (Exercise 2.19), thus disallowing an inequality of type
(2.6.5) for I, and for every f € LP.

We now introduce the notion of capacity, which we develop in terms of
the Bessel and Riesz potentials.

2.6.2. Definition. For a > 0 and p > 1, the Bessel capacity is defined as
Bap(E) = inf{}§ifl} : ga*f210n E, f >0},

whenever E C R". In case a = 0, we take B, , as Lebesgue measure. The
Riesz capacity, Ra p, is defined in a similar way, with g, replaced by /.
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Since go(z) < Ia(z), z € R, it follows immediately from definitions
that for 0 < a < n, 1 < p < n, there exists a constant C = C(a, p,n) such
that

Rap(E) < CB,,(E), whenever E C R". (2.6.7)

Moreover, it can easily be shown that
Rap(E) =0 ifand only if B,,(E)=0, (2.6.8)

(Exercise 2.5).
We now give some elementary properties of capacity.

2.6.3. Lemma. For 0 < a < n and 1 < p < 00, the following hold:
(1) Ba,p(0) =0,
(ii) If Ey C Ey, then B, p(E)) < Bay(E),

(ih) If B C R™i=1,2,..., then
Bay (U E.-) < Ba,y(Ei).
1=1 =1

Proof. (i) and (ii) are trivial to verify. For the proof of (iii), we may assume
that Zf: 1 Ba p(Es) < oo. Since each term in the series is finite, for each
€ > 0 there is a non-negative function f; € LP(R"™) such that

Ga * f,' >1 on E,, "f,”p < Bo.p(E.') + 27"

Let f(z) = sup{fi{z) : i = 1,2,...}. Clearly, go * f > 1 on U2, E; and
f(z)P <32, fi(z)P. Therefore,

Ba.p(UE.-)snfnp lef.llp ZB.;E)H s

i=1 =1

Another useful characterization of capacity is t..e following:

Bo,p(E) = ir}f{ziggga « f(z)} P = {sgpjggyu «f(x)}7? (2.6.9)

where f € LP(R"), f > 0 and ||fl|, < 1 (Exercise 2.4).

Although Lemina 2.6.3 states that B,,.p is an outer measure, it is fruitless
to attempt a development in the context of measure theory because it can
be shown that there is no adequate supply of measurable sets. Rather, we
will establish other properties that show that the appropriate context for
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B,y is the theory of capacity, as developed by Brelot, Choquet, [BRT),
[CH]).

2.68.4. Lemma. If {f;} is a sequence in LP(R") such that ||fi — fll, = 0
as 1 — 0o, p > 1, then there 15 a subsequence {f,-,} such that

ga * fi, () = ga * f(x)
for B, p-qe. z € R

(We employ the time-honored convention of stating that a condition
holds B, ;-q.e., an abbreviation for B, ,-quasi everywhere, if it holds at all
points except possibly for a set of B, ,-capacity zero.)

Proof. It follows easily from the definition of B, , capacity that if f €
LP(R™), then |gq * f(7)] < 00 for B, p-q.e. £ € R*. Thus, for € > 0,

Bap({z ¢ |9a * fi(z) ~ ga * f(2)| 2 €} = Bap({z : |90 * (fi = F)(2}] 2 €})
<ePlfi = flI3.

Consequently, there exists a subsequence {f; } and a sequence of sets E;
such that

|lga * fi,(z) = ga * f(©)| < i7', z€R"-E;

with
BQIP(EJ‘) S €277,

Hence, g, * fi, — 9o * f uniformly on R* —U32, E;, where By, , (U;“;IEJ-) <
€. Now a standard diagonalization process yields the conclusion. m]

2.6.5. Lemma. If {f;} is a sequence in LP(R™), p > 1, such that f;, — f
weakly in LP(R™), then

lim inf go % fi(2) < ga * f(%) < limsup gq * £,(2) (2.6.10)

for Bap-q.e. x € R™. If in addition, it is assumed that each f; > 0, then

ga * f(2) < lin_l.infga * fi(z) for T€R" (2.6.11)
and
o » /() = limint go = fi(z) (2.6.12)

Jor B, p-qe. z € R™.

Proof. Under the assumption that f; — f weakly in LP(R™), by the
Banach-Saks theorem there exists a subsequence of {fi} (which will be
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denoted by the full sequence) such that

i
gi =i f;
=1
converges atrongly in LP(R™) to f. Lemma 2.6.4 thus yields a subsequence
of {g:} (denoted by the full sequence) such that
9o + [(z) = lim g4 + gi(z)
for B, p-q.e. £ € R". However, for each z € R",
liminf g, * fi(z) < lim g, * gi(2),
$—00 1—00

which establishes the first inequality in (2.6.10). The second part of (2.6.10)
follows from the first by replacing f; and f by —f, and — f respectively.
In the complement of any ball, B, containing the origin, ||gally';rn-8 <
00, by {2.6.3). Thus, (2.6.11) follows from the weak convergence of f; to f.
(2.6.12) follows from (2.6.11) and (2.6.10). m]

2.6.6. Lemma. For every set E C R™
B, »(E) = inf{Ba,(U): U D E,U open}.

Proof. Since g, i8 continuous away from the origin, the proof of the lower
semicontinuity of g, * f when f > 0 is similar to that for the Ricsz potential
given at the beginning of this section. The lemma follows immediately from
this observation. a

The lemma states that B, , is outer regular. To obtain inner regularity
on a large class of sets, we will require the following continuity properties
of By p.

2.6.7. Theorem. If {E;} is a sequence of subsets of R"™, then
Bop (iminf £;) < liminf B p(E:). (2.6.13)
10 =00

If E,CE,C... then

Bap (U E‘.—) = lim By p(E:)- (2.6.14)
i=1

If K, D K2 D... are compact sels, then

B.p (ﬁ Ki) = il_l.l'go Ba p(Ki). (2.6.15)
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Proof. For the proof of (2.6.14) assuine that the [imit is finite and let f;
be a non-negative function in LP(R™) such that g, * f; > 1 on E; with

I£illp < Bap(Ei) + 1/ (2.6.16)

Since [|£;||? is a bounded sequence of real numbers, Theorem 1.5.2 asserts
the existence of f € LP(R") and a subsequence of {f;} that converges
weakly to f. Hence, (2.6.12) implies that there exists aset B C E = U2 E;
with B, ,(E — B) = 0 such that g, * f > 1 on B. Therefore,

Ba,p(E) = Ba,p(B) < |IfII}
< liminf [ £(I7

S llm Ba,p(E,'),
i—o00

from (2.6.16). If
i oo
Ai = U ﬂ Eka
]=1 k:J

then {A;} is an ascending sequence of sets whose union equals lim inf E;.
Therefore, since 4; C E; for i > 1, (2.6.14) implies (2.6.13) because

By, (jiminf E;) = Ba, (g A.-)

= im B, p(A;)

< liminf B p(Es).
38— 00

Finally, it {K;} is a descending sequence of compact sets, Lemma 2.6.6
provides an open set U D N2, K; such that

Ba'p(U) < Ba.p (ﬁ K.) + £

i=1

for an arbitrarily chosen € > 0. However, K; C U for all suffictently large i
and consequently B, ,,(K;) < B, p,(U). (2.6.15) is now immediate and the
proof is complete. a

(2.6.14) states that B, is left-continuous on arbitrary sets whereas
(2.6.15) states that B, , is right continuous on compact sets. The impor-
tance of these two facts is seen in a fundamental result of Choquet [CH,
Theorem 1| which we state without proof.

2.6.8. Theorem. Let C be a non-negative set function defined on the Borel
sets in R™ unth the following properties:
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(i) C(o) =0,

(i) If B, C By are Borel sets, then C(B,) < C(Ba2),
(iit) If {Bi)} ts a sequence of Borel sets, then C (UR,B;) < Y o2, C(B;),
(iv) C is left continuous on arbitrary sets and right continuous on compact

sets.

Then, for any Suslin set A C R™,
sup{C(K) : K € A,K compact} = inf{C(U): U D A, U open}.

Any set A for which the conclusion of the theorem applies is called C-
capacitable. In view of Lemma 2.6.3 and Theorem 2.6.8, the following is
immediate.

2.6.9. Corollary. All Suslin sets are B, ;- capacitable.

The usefulness of Theorem 2.6.8 and its attending corollary is quite clear,
for it reduces many questions concerning capacity to the analysis of its
behavior on compact sets.

We now introduce what will eventually result in an equivalent formula-
tion of Bessel capacity.

2.6.10. Definition. For 1 < p < o0, and E C R" a Suslin set, let M(E)
denote the class of Radon mecasures g on R such that u(R" — E) = 0. We
define

bap(E) = sup{n(R")} (2.6.17)
where the supremum is taken over all z € M(E) such that
flga * ully < 1. (2.6.18)
Clearly,
bap(E) = (inf{]lga * ¥l }) ™" (2.6.19)

where the infimum is taken over all v € M(E) with v(R"®) = 1. We have
that

loa vl =sup{ [ gasv- sz 120110 <1}
—owp{[ saesavirzon <1},

and thus obtain

b(,,,,(E)‘1 = (ir:fsl}p/ga * fdu) (2.6.20)
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where v € M(E), v(R"®) =1, and f > 0 with || f]|, <
Recall from (2.6.9) that if E C R™, then

B, ,(E) = {sup inf g, * f(z)} 7
f z€kE

where f € LP(R"), f > 0 and ||f||, < 1. By considering mcasures concen-
trated at points, this is easily seen to be

B, p(E)~'P = Sl;p inf/ga « fdv (2.6.21)

where f and v are the same as in (2.6.20).
We would like to conclude that there is equality between (2.6.20) and
(2.6.21). For this purpose, assume E C It® is a compact set and let

F(f,v)= /ga « fdv (2.6.22)

where f € LP(R"), f 2 0, ||f|l, £ 1 and v € M(E), v(R") = 1. Clearly
F is linear in each variable and is lower semicontinuous in v relative to
weak convergence. Since the spaces in which f and v vary are compact we
may apply the following minimax theorem, which we state without proof,
to obtain our conclusion, [FA).

Minimax Theorem. Let X be a compact Hausdorff space and Y an ar-
bitrary set. Let F be a real-valued function on X x Y such that, for every
y €Y, F(z,y) is lower semicontinuous on X. If F is convex on X and
concave on Y, then

inf sup F(z,y) = Sup inf F(z,y).
zeX yey YzeX

We thus obtain the following result.
2.6.11. Lemma. If K C R" is compact, then
[Ba,p(K)IP = Bap(K). (2.6.23)

Our next task is to extend (2.6.23) to a more general class of sets. For
this purpose, observe that if E C R" is a Suslin set, then

ba p(E) = sup{ba,p(K): K C E, K compact}. (2.6.24)

To see this, for each Suslin set E, let u € M(E) with ||lg, » p|lpr < 1. If
K C E is compact, then v = g|K has the property that v € M(E) with
ll9a * V|l € 1. Since 4 is a regular measure, we have

u(E) = sup{p(K) : K C E, K compact},
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and therefore

brp(E) = sup{bx p(K) : K C E, K compact}. (2.6.25)
From (2.6.25), (2.6.23), and Corollary 2.6.9 we conclude the following.
2.6.12. Theorem. If E C R" is a Suslin sct, then

[ba.p(E)]p = Ba.p(E)-

Thus far, we have developed the set-theoretic properties of B, ;. We now
will investigate its metric properties.

2.6.13. Theorem. For p > 1, ap < n, there exists a constant C =
C(a,p,n) such that

C™'r""2 < B, o[B(z,r)] £ Cr =P
whenever z € R" and 0 < r < 1/2.

Proof. Without loss of generality, we will prove the theorem only for B(0,r)
and write B(r) = B(0,r). Let f € LP(R"), f > 0, have the property that

ga*f>1 on B(2). (2.6.26)

By a change of variable, this implies

/nya (:c:y)f(g)r'"dyzl (2.6.27)

for x € B(2r). From (2.6.3) and (2.6.4), there exists C = C(a, p,n) such
that

C_l!.’B _ yla*ne—ﬂfz—;d < yo(z _ y) < C|.'r _ yla—ne—lz—yl’
and therefore
o (:L‘ - y) < C|$ _ yla—nrn-—ae—h—ylr'
r

<Clz -y|* "oVl (5 < 1/2)
< CH"%ga(z —3y) (r <1/2).

1

Consequently, from (2.6.27),

C’/ ga(z—y)f (’;’) r-edy>1 for z€B(2r), (r<1/2).
Rn
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However,
2.-apf¥ P ~2p.n—ap) f||P
[ [ ) a=cmemng
Hence,
Bap[B(2r)) < C*r"=?||f|F,  r<1/2,
for every f € LP(R") satisfying (2.6.26). Thus,
B, y[B(2r)] £ C¥sm-arp, ,[B(2)), r<1/2,

from which the conclusion follows.
For the proof of the first inequality of the theorem, let f € LP(R"),
f >0, be such that g, * f > 1 on B(r). Then

B < /m 6+ £z < B lga Sl

where ¢ = p* = np/(n—ap). It follows from (2.6.3) that g, < CI,. Because
there i8 no danger of a circular argument, we employ the Sobolev inequality
for Riesz potentials (Theorem 2.8.4) to obtain

r"T < Clfl-
Taking the infimum over all such f establishes the desired inequality. O

The case ap > n requires special treatment.
2.6.14. Theorem. If p > l,ap = n and 0 < F < 1, there exists C =
C(n,T) such that
Clogr™")'7? < B, p[B(z,7)] < C(logr~')' P

whenever 0 <r <7¥< 1 and z € R,

Proof. As in the proof of the previous theorem, it suffices to consider only
the case = 0. Let 4 be a Radon measure such that y[R" ~ B(r)] = 0 and
l19a * gllpr < 1, where we write B(r) = B(z,r). Because of the similarity

between the Riesz and Bessel kernels discussed at the beginning of this
section, there exists a constant C independent of r such that

/ (In* p)?dr < C/ (g * p)P'dz < C.
B(1) R

If |yl < rand |z| > 7, then [z —y| < |z| + |yl < |z} + r < 2|z| and
therefore

pl
C2 / (Ia*p)P dz = / (/ |z — ul“‘"du(y)) dz
r<)z|<1 r<(zi<t \JR»

2GR [ el

relz|<t

= Ci[u(R™))P [log r ).
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Thus, by Theorem 2.6.12, it follows that
B, p[B(r)) < C(logr~1)!-P.

To establish the opposite irequality, let A, denote the restriction of
Lebesgue measure to B(r). Since g, < I,, we have

ga * Ar(Z) < C/ |z — y|* "dy. (2.6.28)
B(r)

If |z] < r/F, Iyl < r, then |z — y| < cr where ¢(F) = 1 + 1/7. That is,
B(r) C B(z,cr). Therefore,

[ meserars [ ey
B(r) B(z,cr)

< C(F)r”
which, by (2.6.28), implies
9o * A () SC(F)r* if |z|<r/T. (2.6.29)
Ifly) <rand r/T < |z] < 1, then [z —y| > |z| - |y| = |z| — 7 > (7)),

where now c(¥) = 1 — 7. Hence,

Fa*A () <C |z—y|* "dy < Cir™z]*™™ if r/F < |z] < 1. (2.6.30)
B(r}

If |z] > 1, then (2.6.3) yields
ga * Ar(z) < Crte 1, (2.6.31)
Thus, (2.6.29), (2.6.30), and (2.6.31) yield
llga * Arllp < Cr™(logr=")"/?"

Appealing again to Theorem 2.6.12, we establish the desired result. QO

2.6.15. Remark. In case ap > n, it is not difficult to show that there is a
constant C = C(a,p,n) such that

B.p(E}2>2C

whenever E # 0. See Exercise 2.6.

Because B, p[B(z,r)] = r"~*? one would expect that Bessel capacity
and Hausdorff measure are related. This is indeed the case as seen by the
following theorem that we state without proof, [ME1)}, [HM]. See Exercises
2.15 and 2.16.

2.6.16. Theorem. If p > 1 and ap < n, then B, ,(E) = 0if H*°P(E) <
00. Conversely, if Bap(E) = 0, then H"~2P*¢(E) = 0 for every € > 0.



76 2. Sobolev Spaces and Their Basic Properties

2.7 The Best Constant in the Sobolev Inequality

There is a fundamental relationship between the classical isoperimetric in-
equality for subsets of Euclidean space and the Sobolev inequality in the
case p = 1. Indeed, it was shown in [FF] that the former implies the latter
and, as we shall see in Remark 2.7.5 below, the converse is easily seen to
hold.

We will give a method that gives the best constant in the Sobolev In-
equality (Theorem 2.4.1), by employing an argument that depends critically
on a suitable interpretation of the total variation for functions of several
variables. This is presented in Theorem 2.7.1 and equality (2.7.1) if referred
to as the co-area formula. This is a very useful tool in analysis that has
seen many applications. We will give a proof for only smooth functions but
this will be sufficient for our purposes.

2.7.1. Theorem. Let u € CF(R"). Then

+oo
/ |Duldz = / H Yu'(t) N Qdt. (2.7.1)
Q -~ 00

Before giving the proof of this theorem, let us first consider some of
its interpretations. In case n = 1, the integrand on the right-hand side
involves Hausdorff 0-dimensional measure, H°. H%(E) is merely the number
of points (including oo) in E and thus, the integrand on the right side of
(2.7.1) gives the number of points in the set u~!(t) N . This is equivalent
to the number of times the graph of u, when considered as a subset of
R? = {(z,y)}, intersects the line y = ¢. In this case (2.7.1) becomes

L[u'uzzfzv(y)dy (2.7.2)

where N(y) denotes the number of points in u~!(y) N Q. (2.7.2) is known
as the Banach Indicatrix formuls, [SK, p. 280).

The Morse-Sard Theorem [MSE1]}, [SA], states that a real-valued func-
tion u of class C™ defined on R™ has the property that H![u(N)] = 0 where
N = {z : Du(z) = 0}. For example, if we consider a function u € CZ(R?),
an application of the Implicit Function theorem implies that u~!(t) N Q is
a l-dimensional class C? manifold for a.e. t. In this case, H'[u~!(t) N Q]
is the length of the curve obtained by intersecting the graph of u in R® by
the hyperplane z = t. Thus, the variation of u, fn |Du|dz, i8 obtained by
integrating the length of the curves, Q2 Nu~!(t), with respect to ¢.

The co-area formula is known to be valid for Lipschitzian functions. (We
will see in Chapter 5, that another version is valid for BV functions.) The
proof in its complete generality requires a delicate argument from geometric
measure theory that will not be given here. The main obstacle in the proof
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is to show that if u is Lipschitz, then
/ H*'[u~} (1) N)dt = 0
R.l
where N = {z : D(z) = 0}. Once this has been established, the remainder
of the proof follows from standard arguments. Because our result assumes
that u € C", we avoid this difficulty by appealing to the Morse-Sard the-
orem referred to above. In preparation for the proof, we first require the

following lemma.

2.7.2. Lemma. If U C R" is a bounded, open set with C* boundary, then

sup {/ divpdz: ¢ € Cj(R"; R"),sup|p| < 1} = H*1[3U)].
Q

Proof. By the Gauss-Green theorem,
/ divdz = / o(z) - v(z)dH" (z)
U 8U
where v is the unit exterior normal. Hence
sup{/ divedz : ¢ € C3(R™; R"),sup|y| < 1} < H"Y(8V).
U

To prove the opposite inequality, note that v is a C! vector field of unit
length defined on 8U and so may be extended to a C! vector field V
defined on R™ such that |V (z)| < 1 for all z € R", cf. Theorem 3.6.2. If
¥ € C§°(R") and || < 1, then with ¢ = ¥V, we have

/diwdx=/ $(y)dH" ' (y)
v U
so that

sup{/ divp: p € CL(R"; R"),suplp| < l}
U

> sup{/ $dH" "y € CP(R™),sup |y < 1} = H"'(9U). O
oU

Proof of Theorem 2.7.1. We first consider linear maps L: R* — R!.
Then there exists an orthogonal transformation f: * — R™ and a non-
singular transformation g such that f(N1) = R!, f(N) = R*™}, (N =
ker L) and

L=gopof
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where p: R® — R! is the projection. For each y € R!, p~!(y) is a hy-
perplane that is a translate of the subspace p~!(0). The inverse images
p~'(y) decompose R™ into parallel (n ~ 1)-dimensional slices and an easy
application of Fubini’s theorem yields

IE| = / H™ Y (E np~(y)ldy (2.7.3)
R!
whenever E is a measurable subset of R". Therefore
1B =181 = [ H*ENT W)y
Rl
= [ E e 0 e
= [ BN T Gl

Now use the change of variables z = g(y) and observe that the last integral
above becomes

18N = [ HEN T e )l

= / H" ' [EN L7 (2))dz. (2.7.4)
Rl

But [¢'| = |DL| and thus (2.7.4) establishes Theorem 2.7.1 for linear maps.
We now proceed to prove the result for general u as stated in the theorem.
Let N = {z : Du(z) = 0} and for each t € R}, let

=R"N{z:u(z)>t}
and define a function f, : R® — R! by

f _ J XE if t>0
t= —XRn-E, if t<0.

Thus,
u(r) =/ fe(z)dt, T € R".
R!

Now consider a test function ¢ € C°(R" — N), such that sup|p| < 1.
Then, by Fubini’s theorem,

-/; u(z)p(z) dz—/ / fe(z)p(z)dtdz

= / / fu(@)o(z)dzdt. (2.7.5)
R JR™
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Now (2.7.5) remains valid if ¢ is replaced by any one of its first partial
derivatives. Since Du # 0 in the open set R" — N, the Implicit Function
theorem implies that u~!(¢) N (R™ — N) is an (n — 1)-manifold of class C™.
In addition, since spt ¢ C R® — N, it follows from the Divergence theorem
that

divpdz = / o(z) v(z)dH" ' (z).
Er (BE)N(R"=N)

Therefore, if ¢ is now taken as ¢ € C§°(R™ — N; R") with sup|p] < 1, we
have

- Du-gadz:/ u-divtpdx:/ div o dzdt
Rn " R JE,

_ / / o(z) - v()dH™(z)dt
R J(R» =N)NBE,

< / H™((R™ = N) 0w (¢)]de
R

< [ H Mut(e))dt. (2.7.6)
Rl

However, the sup of (2.7.6) over all such ¢ equals

/ }Du|dx=/ |Duldz.
R"—-N Rn

In order to prove the opposite inequality, let Ly: R* — R! be piecewise
linear maps such that

lim/ |Li — uldz =0 (2.7.7)
k—o0 Rr
and
Iim/ IDLkldx=./ |Du|dz. (2.7.8)
k—om Rn R»
Let

EF=R"n{z: Li(z) >},
Xt = XE}-
From (2.7.7) it follows that there is a countable set S C R! such that

lim Ixe = xFldz =0 (2.7.9)
k—o0 RR
whenever t  S. By the Morse-Sard theorem and the Implicit Function

theorem, we have that u~1(t) is a closed manifold of class C™ for all ¢t €
R! — T where H'(T) = 0. Redefine the set S to also include 7". Thus, for
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t @S, and £ > 0, refer to Lemma 2.7.2 to find p € Cg°(R"; R") such that
I(pl <1 and

H""{u“'(t)]—/E divpdz < % (2.7.10)

Let M = fR,. |div p|dz and choose kg such that for k > ko,

k €
- xsldr < —.
/‘;nlh Xll -z oM

For k > ko,

/divqua:—-/ div pdz
E, EX

Therefore, from (2.7.10) and (2.7.11)

< M/ Ixe — x¥|dz < g (2.7.11)
Rn

H"“[u“‘(t)]ﬁ/ divpdzs + <
E, 2

< / divpdz + ¢
E}
= / o -vdH" ! +¢
oE!
<SH LY@ + e
Thus, for t € S,
H* 'u ' (8)] < tim inf H™ L)

Fatou's lemma, (2.7.8), and (2.7.4) imply

/ H"“[u“(t)]dtgliminf/ H ML (t))de
Rt k—oo fp1

< liminf / | DLi|dz
RR

k—o0
= / |Duldzx. 0

Theorem 2.7.1 is a special case of a more general version developed by
Federer [F1] which we state without proof.

2.7.8. Theorem. If X and Y are separable Riemannian manifolds of class
1 with
dimX =m 2> k=dimY
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and f: X = Y 13 a Lipschitzian map, then
/A Jf(z)dH™(z) = /Y H™*[A0 [~ (y)ldH* (y)

whenever A C X is an H™-measurable set. Moreover, if g is en H™
tntegrable function on X, then

/ st f@aim@) = [ [ @@t
X Y J-Y(y)

Here, J f(z) denotes the square root of the sum of squares of the deter-
minant of the k£ x k minors of Jacobian matrix of f at z.

The proof of Theorem 2.7.1 above is patterned after the one by Fleming
and Rishel [FR] which establishes a similar result for BV functions. Their

result will be presented in Chapter 5.
We now give another proof of Theorem 2.4.1 that yields the best constant

in the case p = 1.

2.7.4. Theorem. If u € C§°(R™), then

flulln/n-1) < 2~ e(n)"}"|| Duj|.

Proof. For t > 0, let
Ay ={z:|u(z)| > 1}, B,={z:|u(z)] =1}

and let u; be the function obtained from u by truncation at heights t and
~t. If
S @) = fuellasin-13s

then clearly
[wesn] < lue| + hxa,

St +h) < () + hjA(n-D/m (2.7.12)

for h > 0. It follows from the Morse-Sard theorem that for a.e. t > 0, B, is
an (n — 1)-dimensional manifold of class oo and therefore, an application
of the classical isoperimetric inequality yields

|4y~ 1™ < pla(n)" YR H™Y(B,). (2.7.13)
It follows from (2.7.12) that f is an absolutely continuous function with

F(t) < |AfD/m
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for a.e. . Therefore, with the aid of (2.7.13), it follows that
(n=1)/n
([ turremvaz) ™ = fioo) - 10
AR

=Awrmm

< n‘la(n)_l/"/ H™'[B,]dt.
0

The co-area formula, Theorem 2.7.1, shows that the last integral equals

/ |Du|dz,

thus establishing the theorem. a

From the inequality
lelln/(n=1) < 7~ ta(n)~ /|| Dyl (2.7.14)
one can deduce the inequality

lp+ < np(n — 1)/(n - p) || Dull, (2.7.15)

by replacing u in (2.7.14) by u? where ¢ = p(n — 1)/(n — p). Then

(n~1)/n
(/wWMw@O < n™la(n) /% [ ul*"| Duldz

(p—-1)/p
<n~la(n)"Y"q ( / u"v/("-v)dx) | Dy,

Il

by Holder’s inequality.
Of course, one cannot expect the constant in (2.7.15) to be optimal.
Indeed, Talenti [TA] has shown that the best constant C(n,p) is

C(n,p) — "—1/2"’—]/2 (p - 1)1‘(1/9) [ F(l + (n/2))r(n) ] 1/n

n-p [(n/p)L(1+n - (r/p))

wherel < p<n.

2.7.5. Remark. The proof of Theorem 2.7.4 reveals that the classical
isoperimetric inequality implies the validity of the Sobolev inequality when
p = 1. It is not difficult to see that the converse is also true.

To that end let K C R™ be a compact set with smooth boundary. Let
dx (z) denote the distance from z to K,

dy(z) =inf{lz - y|:y € K}.



2.8. Alternate Proofs of the Fundamental Inequalities 83

It is well-known and easy to verify that dx(z) is a Lipschitz function with
Lipschitz constant 1. (See Exercise 1.1.) Moreover, Rademacher’s theorem
(Theorem 2.2.1) implies that dk is totally differentiable at almost every
point £ with |Ddi(z)| = 1 for a.e. £ € R*. For each k > 0, let

Fu(z) = 1 — min[dx (), h}- h~!
and observe that Fy is a Lipschitz function such that
(i) Fr(z)=1lifre K
(ii) Fr(z)=0ifdx(z) 2 h
(iii) {DFn(z)] < k™! for a.e. z € R".

By standard smoothing techniques, Theorem 2.7.4 is valid for F}, because
Fy is Lipschitz. Therefore

{z:0<dg(z) < h}}

('KI)(n 1)/n) < n—la(n llnt .

Since |Ddg (z)| = 1 for a.e. x € R™, the co-area formula for Lipschitz maps,
Theorem 2.7.3, implies that

0<dg(z)<h 1
{0<dk<h)

h
= 5 [ e

= H* dz! (th))

where 0 < ) < h. Because K is smoothly bounded, it follows that
H* dg'(tn)] = H"Y(BK) as h—0

and thus, the isoperimetric inequality is established.

Of course, by appealing to some of the more powerful methods in geo-
metric measure theory, the argument above could be employed to cover the
case where the compact set K is a Lipschitz domain. By appealing to the
properties of Minkowski content, cf. [F4, Section 3.2.39], it can be shown
that the above proof still remains vahd.

2.8 Alternate Proofs of the Fundamental
Inequalities

In this section another proof of the Sobolev inequality (2.4.10) is given
which is based on the Hardy-Littlewood-Wiener maximal theorem. This
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approach will be used in Section 2.9, where the inequality will be treated

in the case of critical indices, kp = n.
We begin by proving the Hardy-Littlewood-Wiener maximal theorem.

2.8.1. Deflnition. Let f be a locally integrable function defined on R™.
The maximal function of f, M(f), is defined by

M(f)(z) = sup { ]g IOCRE o} .

2.8.2. Theorem. If f € L*(R"), 1 < p < o0, then M(f) € LP(R") and
there exists a constant C = C(p,n) such that

M)l < Cliflp-

Proof. For each t € R?, let A, = {z: M(f)(z) > t}. From Definition 2.8.1
it follows that for each x € A;, there exists a ball with center z € A,, such
that

f If|dy > t. (2.8.1)

B,

If we let F be the family of n-balls defined by F = {B; : z € A}, then The-

orem 1.3.1 provides the existence of a disjoint subfamily {B,, By, ..., Bi,...}

such that
oo
S 1Bkl 2 574
k=

and therefore, from (2.8.1),

1902 [ 1fldy >3 1841 > 15701l

Uil B k=1
or
5"
|4:| < = IIflls  whenever te R (2.8.2)

We now assume that 1 < p < oo, for the conclusion of the theorem
obviously holds in case p = co. For each t € R!, define

_ [ f@)if |f(z)| = ¢/2
fi(z) = {0 i | f(z)] < t/2

Then, for all z,
|£(2)] < |fe(2)] + ¢/2,
M(f)(z) < M(fe)(z) +t/2

and thus,

{z: M(f)(z) >t} C {M(fo)(z) > t/2}.
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Applying (2.8.2) with f replaced by f, yields

2.5 2.5"
4 <10 > 2 < 2 [ g = 2

(2.8.3)
Now, from Lemma 1.5.1, and (2.8.3),

oo
/ (Mf)Pdy = / |A,lde?
R" o
oo
=P/ 1P| A, |dt
0

00

5p2~5"/ 92 (/ |f[dz) dt
0 {1f1>¢/2}

= p2P. 5"/ P2 (/ |f|da:) dt
0 {if1>e}

=g [Tl > o

where g is a measure defined by u(E) = f|f|dz for every Borel set E.
Thus, appealing again to Lemma 1.5.1, we have

_ p2P - 5" oo B
f oarras =2 [Zu) > it

2v . §n _
=2 /ﬂ |£1P~ " dp

p—-1
/ | £iPdz < oc.
Rn

_per-5n
=1
Since p > 1. This establishes the theorem. a

For 0 < a < n, we recall from Section 2.6 the definition of the Riesz
potential of f of order a:

1 fy)dy
¥a) Jpn |z —y|"—°

Io+ f(z) = I f(z) =

The following lemma is the final ingredient necessary to establish the
Sobolev inequality for Riesz potentials.

2.8.3. Lemma. If 0 <a <n, >0, and § > 0, then there s a constant
C = C(n) such that for each z € R,

" Wy < osmmifya)
B(z.5) |:L‘ - yl
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. (y)ld; -
(i) R" - B(z.6) Elifj%)ll"% < G M(a)

Proof. Only (i) will be proved since the proof of (it) is similar. For z € R"
and & > 0, let the annulus be denoted by

6 6 6 6
A(x'g—k’ﬁ) =B (I‘ﬁ) —3(1,2—“—,),
and note that
/ f(w)ldy i / f(y)ldy
B(z.5) [z —yln-2 pyerd -‘4—)| r—y|*-°
o0
3 (5 ) \fldz

k= B(z, ;%)

03 () () [

< C8M(f)(=z),

I

o

where a(n) denotes the volume of the unit n-ball. This proves (i). a

We now will see that the Sobolev inequality for Riesz potentials is an
easy consequence of the above results.

2.8.4. Theorem. Let a > 0,1 < p < 00, and ap < n. Then, there is a
constent C = C(n,p) such that

np
n—ap’

Ha(Mpr < Clifllp, p° =
whenever f € LP(R™).

Proof. For § > 0, Hilder’s inequality implies that

oo 1/p'
/ __If(u)l_a dy < w(n—1)|fll, (/ r"_’“"'("“’)dr)
R*-B(z,6) [T~ ¥|" 6

where r = |z — y|. The integral on the right is dominated by §2-(n/9) gince
ap < n, and therefore, by Lemma 2.8.3(i),

lla(f)z)| <C [6°M(f)(z) + 6"‘("/")||f||,,] : (2.8.4)

1f we choose o/
M=)\ ™"
"‘( 17 ) !
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then (2.8.4) becomes
Ma(£)(2)] < CIM(f) ()]~ /) /™

or,
(D)@ < CIM(D)PIAISE™?.
An application of Theorem 2.8.2 now yields the desired conclusion. 0

2.8.5. Remark. If we are willing to settle for a slightly weaker result in
Theorem 2.8.4, an easy proof is available that also provides an estimate of
the constant C that appears on the right-hand side of the inequality. Thus,
if Q is a domain with finite measure, f € LP(Q), and p < ¢ < p*, we can
obtain a bound on |[I5(f)|l; by a method that essentially depends only on
Hédlder’s inequality.

For this purpose, let 1 =1- % - %) and note that because g < p°,

|z —y|*™" € L"(Q) (28.5)
for each fixed x € R™. As in the proof of (2.4.7), if |B(z, R)| = ||, then

_ (a~n)r+n
{ax—n)r (a—n)r _ w(n I)R
T — d S/ T - dy =
/nl vl y B(:‘R)I vl y a—nyrin
—_— vy
win =D _ ciar ) (2.8.6)

- [(a — n)r + nja(n)”
where ¥ = ((@ — n)r)/n + 1. For each fixed z, observe that

/
2 = sl==1 @) = (jz - sl e)
(le =yl ) - )P (28.7)

where 6 = ‘—lj — 1. Because ‘—}7 + 146 =1, we may apply Holder's inequality
to the three factors on the right side of (2.8.7) to obtain

1/q
()] < ( [=- yl“‘““"lf(y)l”dy)
']

(/ lz—ui‘“-”'dy)w ([ 1rrar) .

Therefore, by Fubini’s theorem and (2.8.6),
/ (Taf)idz < ] / |z — 4|~ | £ (y) Pdzdy
N /0
- (a8, n)}, |\fifpe®

< C(aa 6, Q) * "f"; ) C(G, s, Q : "j“;q5

]
v
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Thus,

1aflly < Cla, 8, )0+ 7|1,
S C(av 61 Q)I/r"f”P‘

2.8.6. Remark. It is an easy matter to sce that Theorem 2.8.4 provides
another proof of Theorem 2.4.2. Indeed, if u € C¥(R"), recall from (2.4.5)
that for every r € R®,

lu(z)] < C(n)1y(|Dul). (28.8)
In fact, if we employ the Riesz composition formula which states that
Ioxlg=1:p, a+p<n,
an application of (2.8.8) to the derivatives of u gives the estimate
|u(z)] < C(n, k)L(|D*ul).
From Theorem 2.8.4 we have
IZ(1D*uh)llp= < CliD*ully

if kp < n. Thus, .
lullps < ClID%ullp < Cllulle,p

which is the conclusion in (2.4.10) when 2 = R"™.

Of course, one could also employ Theorem 2.6.1 which states that each
u € WEP(R™) can be represented as u = g, * f for some f € LP(R"), where
|£ll, ~ ll%l|x,p;r~- Then, in view of the fact that g, < Cly, (2.4.10) follows
from Theorem 2.8.4.

2.9 Limiting Cases of the Sobolev Inequality

In previous sections all Sobolev-type inequalities were established under
the restriction kp # n. We now treat the case kp = n in the context of
Riesz potentials and since the Riesz kernel I, is defined for all positive
numbers a, we will therefore replace the integer k by a.

When ap = n, one might hope that I, * f is bounded because p* — co
as ap — n. However, while boundedness is trivially true when n = 1, it
is false when n > 1. As an example, consider u(x) = |loglz|)}*~%/("-1);
clearly u € Wi™(B(0,r)) for r < 1, but u ¢ L>(B(0,r)). Although an
L% estimate cannot, in general, be obtained it is possible to obtain results
that provide a good substitute. Qur first result below offers exponential
integrability as a substitute for boundedness. We begin with a simple and
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elegant proof of this fact which follows easily from the estimate discussed
in Remark 2.8.5.

2.9.1. Theorem. Let f € LP(R2), p > 1, and define

g= In/p * f
Then there are constants Cy and C, depending only on p and n such that
g 1”7
exp | ———| dz < C,. 291
£ (] ’ 291
Proof. Let p < ¢ < 00 and recall from Remark 2.8.5 the estimate
afllg < Cla, 6,207 ||fll,, (2.9.2)
where { =1 - (:7 - %),
- v
Cla,5,Q) = w(n—1)|0
[(a = n)r + n]a(n)?’
and
v = ———(a—n)r +1.
n
In the present situation, ap = n, and therefore
np
a—-n)r+n= ————,
( ) pg+(p—q)

Thus, we can write
Cla,6,2) = C = Ky (”—‘”—i‘;‘—‘”) < KI9/'q

where K, and K are constants that depend only on p and n. Thus, since
v¢/r =1, from (2.9.2) we have

[ laftdz < CV 1
< (@)Y IQUIANE = (gK) 920 Q] || £)g.
Now replacement of ¢ by p'q (which requires that ¢ > p — 1) yields
]n |92z < (5'gK) 910 | £,

In preparation for an expression involving an infinite series, substitute an
integer k, k > p — 1, for g to obtain

1/ ol \* ik Kp
/ (Cﬂfllp) dr <P KRG 1)"”'(@')



90 2. Sobolev Spaces and Their Basic Properties

for any constant C > 0. Consequently,
— 1/ gl )”k , o~ K (KP’)"
— [ ==— dz < p' K| _— | ==
/n,,zk H (Cllfltp 3w\

where ky = [p]. The series on the right converges if C? > eKp' and thus
the result follows from (1.5.12) when applied to the terms involving k < ko
and the monotone convergence theorem. @]

By appealing to a different method, we will give another proof of expo-
nential integrability that gives a slightly stronger result than the one just
obtained.

2.9.2. Theorem. Let f € LP(R™), spt f C B where B is a ball of radius R,
and let p = n/a > 1. Then, for any € > 0, there 13 a constant C = C(e, n,p)

such that
][ n
exp
B [wn -1

Proof. Clearly, we may assume that || ]|, = 1. Then,

In/p(f)(z) _
11l

pl
€ ] dz < C. (2.9.3)

Sz - y|*"dy + /

B-B(z.6

L@ = [

f)lz —y|* "dy
B(z,8) )

where £ € B and 0 < § £ R. By Lemma 2.8.3(i), the first integral on the
right is dominated by C6*M(f)(z). By Holder’s inequality and the fact
that || f]|, = 1, the second integral on the right can be estimated as follows:
if r = |z — y|, then

R 1/p'
./ fWlz—y|*"dy < [w(n - 1)/ r‘“‘")p'ﬂ—ldr]
B-B(z 6) \

= [w(n — 1) log(R/6)|"/*".
Thus
[La(£)(z)| < CE*M(f)(z) + (w(n - 1) log(R/6))"/¥".
If we choose
8% = min(eC™ M (f)(z)] 7!, R),
then we have

Ha(f)(E)] <€+ [w(n -1) ]0g+(RE—l/acl/oM(f)(x)l/a)] 1/p’ ’
or
(Ta(f)(@) = €)** < w(n—1)n~! log* (R"ePCPM(f)(x)P)
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since ap = n. Because ||f[|, = 1, the conclusion now follows immediately
from Theorem 2.8.2. )

2.9.3. Remark. Inequality (2.9.3) clearly implies that if 8 < n/w(n — 1),
then there is a constant C = C(8, n,p) such that

fmkwnm
B

/1o
thus recovering inequality (2.9.1).

Although it is of independent mathematical interest to determine the
best possible constants in inequalities, in some applications the sharpness
of the constant can play a critical role.

The sharpness of the Sobolev imbedding theorem in the case of critical
indices has had many dlﬂ'erent approaches. For example, in [HMT), it was
shown that the space W,'"(2) could not be embedded in the Orlicz space

L,(Q) where o(t) = exp(jt|*/*~1) — 1). On the other hand, with this
Sobolev space, it was shown by Moser [MOS] that (2.9.4) remains valid for
B = nfw(n — 1); that is, ¢ can be taken to be zero in (2.9.3). Recently,
Adams [AD8| has shown that (2.9.4) is valid for 8 = n/w(n — 1) with no
restriction on a.

Theorems 2.9.1 and 2.9.2 give one version of a substitute for boundedness
in the case ap = n. We now present a second version which was developed
by Brezis and Wainger [BW).

For this, recall the definition of the Bessel kernel, g5, introduced in (2.6.1)
by means of its Fourier transform:

] dz < C, (2.9.4)

dolz) = 20731 + |2f?)~2/2,

Also, recall that the space of Bessel potentials, L*'?(R"), is defined as all
functions u such that u = g, * f where f € LP(R"). The norm in this space
is defined as ||ulla,p = ||fllp- Also, referring to Theorem 2.6.1, we have in
the case a 18 a positive integer, that this norm is equivalent to the Sobolev
norm of u.

For the development of the next result, we will assumne that the reader
is familiar with the fundamental properties of the Fourier transform.

2.9.4. Theorem. Let u € LY9R") with £g > n, 1 < ¢ < oo and let
ap=n,1<p<oo. If |uflap £ 1, then

lulloo < € [L+ 1087 (1 + [lulle)] - (2.9:5)

Proof. Because C$°(R") is dense in L&(R"™) relative to its norm and
algo in the topology induced by uniform convergence on compact sets, it is
sufficient to establish (2.9.5) for u € C§°(R").
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Let ¢,n € C®(R™) be functions with spty compact, ¢ = (2r)~"/2
on some neighborhood of the origin, and @ + 7 = (27)""/2 on R". Since
u € CP(R"), u may be written in terms of the inverse Fourier transform

as
u(r) = / e i(y)o(y/R)dy + / e*Vi(y)n(y/R)dy

= (z) + ua(a), (2.9.6)

where R > 2 is a positive constant to be determined later.
The proof will be divided into two parts. In Part 1, the following inequal-
ity will be established,

lulleo < C(log R)M/*
while in Part 2, it will be shown that
Juzlloo < CR™®|lufle,

for some § > 0. The conclusion of the theorem will then follow by taking

R = max(2, lulgy)-

Proof of Part 1. We proceed to estimate u; as follows:

-n - n af2 R
(@) = @0 [ i 21
= f « Kp(z)
where R
fy) = @m)"3(1 + [y12) 2a(y)
and (v/R)
v () = PR
Kr(y) = Tx W) (2.9.7)

Note that u = g, * f (see Section 2.6) and therefore
I£llp = llslla,p < 1.
Consequently, in order to establish Part 1 it will be sufficient to show that
IKrlly < C(log R)/*, R>2.

We now define a function L such that L = . Note that L is a rapidly
decreasing function and thus, in particular, L € L}(R*) N C>°(R"). Let

La(z) = R"L(Rx).
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From (2.9.7) we have that

@m) 2 Kgp(y) = Lr(y) - §aly)

and
(2r)"™2Kp = Lg * ga

Let B(R) be the ball of radius R centered at the origin. Define two functions
Gl and G2 by
G4 (%) = ga(T)x p(R-1)(T)

Ga(z) = ga(z) = G4 (7).

Then
(2m)"™2Kp(r) = Lr » GA(z) + Lp + G (z).

An application of Young's inequality yields
IZr+ Gally < IILrlly - 1Gallx (2.9.8)

and it is easily verified that

(Lrlly = CR™?
while from (2.6.3) and op = n, it follows that

IGAl < CR™™/P.
Similarly, from (2.6.3) we see that

ga(z) < Cilafom e

and therefore
1/p'
IGilly <C (_/ Cnlzl“"")"‘dz)
1/R<)zi<1

1/p
v C / e=Calele’ gz
1<)z| <00

< C(log R)'? +C
< C(log RV

since R > 2. Hence,
|Lg * G2l < C(log R)!/¥ (2.9.9)

because
L&l = liL) = C < oo.
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Thus, from (2.9.8), and (2.9.9) we have

IKrlly < Cllog )7, (2.9.10)
thereby establishing Part 1.

Proof of Part 2. We write uy as follows:

ua(z) = (2m) "2 / €= Vi (y)(2m)™/2(1 + |y "(—fﬁiﬁ—z/z v
= g* Kg(z) (2.9.11)
where
Kp(y) = ﬁ—% (2.9.12)
and

#ly) = a(y)@m)"?(1 + |yH)Y3.

By assumption, u € L%9(R"), and therefore it follows from definition that
g € L3(R™) with u = gy * ¢. In order to establish Part 2, it suffices to show
that

IKglly <CR™® for some &> 0.

First, consider the case ¢ = 1. Since &g > n by assumption, we have
£ > n. Now write

|Kr(z)| = ‘/eiﬂw n(y/R)dy

R)|d
e In(y/R)ldy

- lyl¢

Recall that 5 vanishes in some neighborhood of the origin, say for all y such
that |y| < eR. Thus, for all z,

|n(y/R)|dy
K r(z)] < -/R"—B(O,eR) |y

< C/ ity
eR
S CRn—l

since £ > n. Thus, Part 2 is established if ¢ = 1.
Now consider ¢ > 1, so that ¢’ < oo and without loss of generality, let
€ < n. Since ¢ + = (27)""/2 on R™, (2.9.12) can be written as
1 v(y/R)

n/2 — —
(2m)"/?Kgr(y) = T+ 7~ O+ D72

Thus, we have
Kr(z) = ge(T) — ge * LR(T) (2.9.13)
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where )
Lp(z) = R"L(Rz), L(y) = o(v).

We can rewrite (2.9.13) as

Kn(z) = / l96(z) — ge(z — ¥)|Lr(v)dy (2.9.14)

because
(27r)_"/2 = y(0) = (27r)'"/2/ e_io'”L(y)dy.

Rn

To estimate [ |ge(z ~ y) - ge(z)|9 dr we write

/ lge(z — y) — go(2)|¥ dz = / |ge(z - y) ~ ge(x)|¥ dz
R'l

|z 2yt
+ / l9e(z — y) — ge(a)|¥ da
x> 2|l
= 11 + 1.

Now

n<c ( / lge(z — y)|7 dz + / lgt(z)w'dz)
lz|<2jy! )z <20yl

<C -y)l¥d “ds
< (/.z-msmr”’(” rdes [ o) )

< Cly[E—me'+n,

by (2.6.3). To estimate I3, note that g, is smooth away from the origin,
and therefore we may write |ge(z — ¥) — ge(z)| < |Dge(z)) - ly| where z =
t(z —y)+ (1 — t)z = z — ty for some ¢t € [0, 1]. Since, |2| > 1/(2|z|) when
|z| > 2|y] we have, with the help of (2.6.4),

./ lge(z — 3) — ge()|¥dz < C e~ Clal|g|(e=n=14 |y|7 4z
Je)>2ly] J=1>2ly]

< |y|q'/ e—Clrl|z|(l—n*l)q‘dI
Rn
<Clyl*.
Consequently, combining the estimates for I, and Iz, we have

lige(z — y) — 9e(z)llg < Clyl® (2.9.15)

where 6 = [(£ + 1 — n)¢’ + n]/¢ > 0. Referring to (2.9.14), we estimate
K g|ly with the aid of Minkowski's inequality and (2.9.15) as follows:

( / lxa(r)w'dx) e / ( [19e(z = 1) - aetoie az) " Laldy
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<c / |La()l [y dy

= CR™* / |L(Ry)| |Ry*dy
< CR™S.

The integral f|L(z)||z|°dz is finite because L = ¢ and thus L is rapidly
decreasing. The proof of Part 2 is now complete and the combination of
Parts 1 and 2 completes the proof of the theorem. @]

2.10 Lorentz Spaces, A Slight Improvement

In this section we turn to the subject of Lorentz spaces which was intro-
duced in Chapter 1, Section 8. We will show that the Sobolev inequality
for Riesz potentials (Theorem 2.8.4) as well as the development in Chapter
2, Section 9, can be improved by considering Lorentz spaces instead of LP
spaces.

We begin by proving a resuit that is similar to Young’s inequality for
convolutions.

2.10.1. Theorem. If h = f x g, where
1 1

f € L(pvaI)v g€ L(p2$Q2)| and —+— > 1,
D P2

then h € L(r,s) where
1 1

—_—_t—_—1=

b 25 U ]
and s > 1 is any number such that

3 |

1 1 1
—+ — > -,
3] q2 s

Moreover,
”h”(r.a) < 3""f"(pn,qx)”9"(132.412)'

Proof. Let us suppose that ¢, g3, 8 are all different from oo. Then, by
Lemma 1.8.9,

(et = [ @rE < [T a0 [7 o on] £

oo v s
TELrOeOHs e
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The last equality is by the change of variables z = 1/y, t = 1/u. Now use
Hardy's inequality (Lemma 1.8.11) to obtain,

[l fr@e@)sls
< g /Dw [yl—(l/r)f"(l/yzg"(lly)]'d?y;

oo
dz
- r:/ [Il+(l/r)f“(r)g“(z‘)]‘—-,
0 I
by letting y = 1/z.
Since s/q, + s/q2 > 1, we may find positive numbers m,, mz such that
1 1
— +—=1 and —l—si, —s-—s—.
my ma my qy m q2

Therefore ¢, < smy, gz < sm2. An application of Holder’s inequality with
indices 1n;, mq, yields

= 1/p) for s II/P? s .
(llh”(r.a))'sf"/o [z zlj;ml(x)] [ xlimz(z)] dz

<r® [-/‘;w[xl/plf..(x)]'ml dx] 1/m

el

% .. ema dz
. {-/0 [II/P 9 (x)] ;:I
= r‘("f“(pl.am;))'“lg"(pz.-mz))"

Thus, by Lemma 1.8.13

"h”(r.n) < r”f"(pr.aml)”g”pz.!'"z)
S elleellcr”f”(m-q:)"y"(m.lh)
S 3r"f”(m .q:)“.q"(pz.q:)-

Similar reasoning lcads to the desired result in case one or more of ¢,
g2, 8 are 00. 0

As an application of Theorem 2.10.1, consider the kernel I,(z) = |z|*~"
which is a constant multiple of the Riesz kernel that was introduced in
Chapter 2, Section 6. For simplicity of notation in this discussion, we omit
the constant y(a)~! that appears in the definition of /,(z). Observe that
the distribution function of I, is given by

ar, (t) = f{z : [z > 8}|
= l{z : Jzf < /@™y
= a(n)t*/(@-m)
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and because I is the inverse of the distribution function, we bave I;(t) =
(;(!,-.-;)(""’"V ", It follows immediately from definition that

() = ( (" )t(a-n)/n

a(n)a

and therefore that I, € L(n/(n — ), 00). If we form the convolution I, * f
where f € LP = L(p, p), then Theorem 2.10.1 states that

I, * f € L(q,p)

where

1 1 n-a 1 a

-=-+ —l=-—-

qQ D n p n
Moreover, it follows from Lemma 1.8.13 that L(g,p) C L(g,q) and thus we
have an improvement of Theorem 2.8.4 which allows us to conclude only
that [, f € L. As a consequence of Theorem 2.10.1, we have the following

result that is analogous to Theorem 2.8.4.

2.10.2. Theorem. If f € L(p,q) and 0 < a < n/p, then

Ia * f € L(71Q)

and
"Ia * f"(r,q) < "Ia”(n/(n—a),oo)"f”(p.q)
= C”f”(p.q)
where
1 _ 1 o
r p n

We now consider the limiting case of 1/p; +1/p; = 1 in Theorem 2.10.1.
In preparation for this, we first need the following lemma.

2.10.3. Lemma. Let ¢ be a measurable function defined on (0,1) such
that ty(t) € LP(0,1;dt/t), p > 1. Then,

1
(1 +|108¢|)_1/ w(8)ds||Lo(0,1,de/t) < #”up(t)"l}(o,l;dtlt)-
t

Proof. By standard limit procedures, we may assume without loss of gen-
erality that ¢ € L'(0, 1) is non-negative and bounded. Let

I=/:(l+|logt|)"’ (‘/lltp(s)ds)p%.
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= Gi'T) /01 (/. 1 W(s)'“)pd(l ~ logt)~P*!

integration by parts yields

Since

-1

1 1 P
1=p—'_’—l i (/‘ ¢p(a)ds) (1 - logt)~P*1p(t)dt,

and Holder's inequality implies

1
p _ _
1< 2ol +1ogt)™ [ o0)dslzaly allte©losanor
¢
from which the conclusion follows. §]

2.10.4. Remark. Before proving the next theorem, let us recall the fol-
lowing elementary proof concerning convolutions. If f,g € L'(R™) we may
conclude that

[ [ e - wetitaay = [ ot [ 11tz - pidzay
=./n- lg()] - 1l dy

=171 - llgllz < oo.

Thus, the mapping y — f(z — y)g(y) € L'(R™) for almost all € R and
frge LNRM.

In the event that one of the functions, say f, is assumed only to be an
element of L(p,q), p > 1, ¢ > 1, while g € L(R"), then the convolution
need not belong to L!(R™), but it will at least be defined. To see this, let

1 if f(z)>1
filz) =4 f(z) if -1<f(z)<1
-1 if f(x)< -1
and let f; = f — fy. Then f, « g is defined because f, is bounded. We

will now show that f € L'(R") thus implying that fa & g is defined and
therefore, similarly for f * g. In order to see that ;5 = L'(R") let

P (S f)] > 1
f"”‘{o if [f(z)] < 1.

Clearly aj,(s) = ay(1) if 0 < s < 1 and oy, (s) = ay(s) if s > 1. Conse-
quently :

f3(ay(1)) = inf{s:agz(s) < as(1)} =0.
Thus, since f; is non-increasing, f;(t) vanishes for all t > as(1) and it
is easy to see that f*(t) = f3(t) for all t < ay(1). We may assume
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that ¢ > p for, if ¢ < p, then Lemmas 1.8.13 and 1.8.10 imply that
f € L(p,q) C L(p,p). Consequently, by Young’s inequality for convolu-
tions, f * g is defined. In fact, f x g € LP. With ¢ > p and a = ay(1), we
have

L L] e » q
=L [T SO [ L0,

t1—(a/p) o - t1=Ge/p) o t1—(a/P)

_a(q/p)—I/ f*(t)%dt
0

= gla/e)-1 / faie)de
OOO )

__.a(qlp)—l/ f1(e)9dt
0

o0 >
Q

where @ € [0, a}. Since f;(t) vanishes for ¢ > a whereas )2 1fort <a,
it therefore follows that

/ " frnae < / ” J3 0%t < oo,
)] 0

thus showing that f, is integrable because f2 and f3 have the same distri-
bution function. Therefore f; is integrable.

2.10.5. Lemma. Let 1 < p < 00,1 < ¢ < 00,1 < g2 < 00 be such

that 1/qy + 1/g2 < 1 and set 1/r = 1/q1 + 1/qa. Assume f € L(p,q1) and
g€ (P,q2)NLYR") and let u = f xg. Then

@ 17 dt]'’”"
< . ’
[ 58] 4] <lirbgmn - (ol + o)
where C depends only on p, q,, and q-.

Proof. Note from the preceeding remark, that « is defined. For simplicity

we set | fll(p.q,) and |igl] = [lgll(p’.¢) +llgll1- Also, for notational convenience

in this discussion, we will insert a factor of (¢/p)'/? in the definition of the
£ llp.gyi thus,

q l/q o ] dt l/q
(;) (/ [t'/”f"(t)]"T) , 1<p<oo,0<g<oo
0

q I/q
(*) sup £1/2 f**(2), 1<p<oo,g=00
p t>0

Moo =

We distinguish two cases:

(i) r< o0



2.10. Lorentz Spaces, A Slight Improvement 101

(i) 7 = oo (i.e. g = g3 = 00).

(i) The case r < 0o. Recall from Lemma 1.8.8 that for every ¢t > 0,

20
wt (1) S 417 (g™ (t) + / 1*(9)9"(s)ds. (2.10.2)
t
Clearly, the following inequalities hold for every s > 0:
» L) 1
£ &) < f7(8) < Sl s (2.10.3)
. . 1
g (3) S g (8) S m”y”(p',qg)v (2104)
. v 1
g°(8)<g""(8) < ;"9”1- (2.10.5)

For ¢ < 1, it follows from (2.10.2), (2.10.3), and (2.10.4) that,

1

. 1 Do
() < ttl_/;tT/;T“f“(P»Q\)”g”(p'.qa)+‘/; [ (s)g"(s)ds

o0
+ [T 1o (2.106)
1
From (2.10.3) and (2.10.5) we have that

ﬁ £ ()" (8)ds < ol Mlepuary - Mol

This in conjunction with (2.10.6) yields

WO <plfllal + [ £ (s)g"()de (2.10.7)

By Lemma 2.10.3, (2.10.7), and (2.10.4) we have
(Y + Vlog t) ™ e (&)l 0.1:2e7ty < CNEI gl + ClEST (£)g" ()2 (0.1:desey
= ClIfllg + ClIE*/P s (e
' 9.“)”1,'(0.1-,41/2)
< Clf el + Cll lip.any gl a)-
(ii) The case r = oo. By (2.10.7), (2.10.3), and (2.10.4) we have, for t < 1,

u™ () < pllflgll + Nog t] 11/ lp.00) 91l (5100}

and therefore
N1+ |logth) ™ 'u** ()l Lo,y < CllfiH o). o

2.10.6. Theorem. Let 1 < p < 00,1 < q < o0,1 < gy €00 be such
that 1/q, + 1/q2 < 1 and set 1/r = 1/q) + 1/qa. Assume f € L(p,q1) and
g€ L(p',q))NL! and let u= f *g. Then
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(i) if < oo, M € LL (R") for every A > 0.

(ii) #f r < oo, there exists posstive numbers C = C(p,q1,92) and M =
M(|Q)) such that

/ Cll dr < M
Q
Jor every f and g with || fllp.q) < 1 and |lgllpr.q) + Il < 1.

Before proceeding with the proof, let us see how this result extends the
analogous one established in Theorem 2.9.1. To make the comparison, take
one of the functions in the above statement of the theorem, say f, as
the Riesz kernel, I,;,. As we have seen from the discussion preceeding
Theorem 2.10.2, f € L(p',00). The other function g is assumed to be
an element of LP(2) where §2 is a bounded set. Thus, by Lemma 1.8.10,
g € L(p,p) N L,(R"). In this context, ¢, = oo and g3 = p > 1 thus proving
that this result extends Theorem 2.9.1.

Proof. Consider part (i) first. Because u*(t) is non-increasing we have that

¢
0

t
Iu.(r)lr-/o(l—IUgS)_r?S/ uo(s)r(l_logs)—r$

for every ¢t < 1. The first integral equals (1 —logt)~"*!/r — 1 with r > 1
and Lemma 2.10.5 implies that I(t) — 0 as t — 0 where I() denotes the
second integral. Note that there exists a constant K = K (7) such that

[w* (8" < K+ |logt)I()C1, o<t<1. (2.10.8)

With @ C R™ any bounded measurable set, we have with the help of
Lemma 1.5.1,

, [Q| : to '
/ exp(Clu(z)))" dz = / exp(Clu (H)])" dt = / exp(Clu* (&))" dt
Q ()} ()}

o]l
+ / exp(Clu (1)) dt (2.10.9)

to

where 0 < ¢35 < |Q|. Because u* is non-increasing, it is only necessary to
shqw that the first integral is finite. For this purpose, choose ¢y < 1 so that
C" KI(tp)/("=1) < 1. Then, from (2.10.8),

exp(Clu*(t)])" < (e/t)®

where & = C” K (t5)/"~1). Thus, part (i) of the theorem is established.
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For the proof of (ii), Lemma 2.10.5 and the fact that u*(t) is non-
increasing allow us to conclude that for 0 <t < 1,

] r ¢ —rds r r
|u* ()] A (1-1logs)™— < CI/II" - lgll",

where ||f|l = | fll(p,e,) and llgll = ligll(p*,e2) + llgll1. Therefore,

lu* (I < K~ log )11 lg]l”"-

Similar to part (i), the proof of (ii) now follows from (2.10.9) by choosing
KC <1 a

Exercises

2.1

2.2

2.3.

2.4.

2.5.

Prove that W*?(R") = WSP(R™).

If f and g are integrable functions defined on R" such that

/fwdx= /ywdx

for every function ¢ € C§°(R"), prove that f = g almost everywhere
on R".

Prove the following extension of the Rellich-Kondrachov compactness
theorem. If Q i8 a domain having the extension property, then

WE™P(Q) — We(Q)

is a compact imbedding if mp < n,1 < ¢ < np/(n—mp)and m a
non-negative integer.

Verify the following equivalent formulation of Bessel capacity:

-p
B, p(E) = ir}f{‘/:EEga * f(x)}

= {Sl}p./,egg“ *f(z)}

where f € LP(R™), £ >0, and ||f]l, > 1.

Prove that the Riesz and Bessels capacities have the same null sets;
that is, Ra p(E) = 0 if and only if B, ,(E) = 0 for every set E C R".
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2.6. Show that there is a constant C = C(a, p,n) such that
Ba,(E)2C
provided ap > n and E is non-empty.

2.7. As an extension of Corollary 2.1.9, prove that if 2 is connected and
u € W5P(2) has the property that D®u = 0 almost everywhere on
Q, for all |a| = k, then u is a polynomial of degree at most k — 1.

2.8 Let1 <p, kp<n If K CR" is a compact set, let
Ye,p(K) = inf{||u||§ , : u > 1 on a neighborhood of X,

u € C(RM)).

With the aid of Theorem 2.6.1, prove that there exists a constant
C = C(p, n) such that

C !By p(K) < 1 p(K) < CByp(K).
2.9. Show that for each compact set K C R",

inf{/ IDu"dz:u>1 on K, u€ cg°(R")} =0,

2.10. Prove that there exists a sequence of piecewise linear maps
th R" — Rl
satisfying (2.7.7) and (2.7.8). See the discussion in Exercise 5.2.
2.11. Suppose that u: R* — R! is Lipschitz with ||Dulj,,gn < co. Define
ay: R' — R! by a,(t) = |{z : u(z) > t}|. Since ay is non-increasing,
it 18 differentiable almost everywhere.

(a) Prove that for almost all ¢,
-a,(t) 2/ |Du|"'dH™ .
)
(b) Prove that equality holds in (a) if
{z : Du(z) = 0}| = 0.
2.12. Theorem 2.8.4 gives the potential theoretic version of Theorem 2.4.2,

but observe that the latter is true for p = 1 whereas the fornter is
false in this case. To see this, choose f; > 0 with [, fidr = 1 and
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2.13.

2.14.

2.15.

spt f; C B(0,1/3). Prove that I, * fi — I, uniformly on R* — B(0,r)
for every r > 0. Thus conclude that

/ (Ta % S dz > / (o % MO0y,

B(0,r)

The right side tends to

/ (I)*(*="gg = C ||~ "dz.
B(0,r) B(0,r)

But

/ |Jz]™™dz - 00 as r —0.
B(D,r)

Show that Theorem 2.8.4 is false when ap = n. For this consider

—a(l+e)/n
) jal <1

x| > 1

f(z) = {'I"“ (1og 2
0

where ¢ > 0. Then f € LP since ap = n but I, * f(0) = co whenever
a(l +e)/n < 1.

Prove the following extension of Theorem 2.8.2. Suppose |f|log{2 +
|£]) is integrable over the unit ball B. Then M f € L!(B). To prove
this, note that (with the notation of Theorem 2.8.2)

oo
/MfdzgiBH/ Mdz§|B|+/ [Aqldt + |4, ).
B Ay 1

Now use (2.8.3) and Exercise 1.3.

There is a variety of methods available to treat Theorem 2.6.16. Here
is one that shows that By ,(K) =0if H"? < o0, 1 <p<n.

STEP 1. Use Exercise 2.8 to replace B, p(K) by 71,,(K).

STEP 2. There exists C = C{n, k) such that for any open set U D K,

there exist an open set V O K and u € W,'P(R") such that
i)u>0

(ii) sptuC U

(iii) KCcV C {z:u(r)=1}

(iv) fpn |DulPdz < C.
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To prove Step 2, first observe that Hg P(K) < oo (see Exercise
1.10). Since K is compact, there exists a finite sequence of open halls
{B(ri)}, i =1,2,...,m, such that

Kc L"J B(ryc|JB@r)cU
i=1 i=1
and o
Y a(n—p)rt P < H3P(K) + 1.

i=1
Let V = U, B(r;) and define u; to be that piecewise linear function
such that u; = 1 on B(r;), u; =0 on R® — B(2r;). Let

u = max{y; : ¢ =1,2,...,m}

to establish Step 2.
STEP 3. For each positive integer k, let

1
U = {z:d(x,K) < E}
Employ Step 2 to find corresponding u; such that
/ |Dux{Pdz < C
R'l

fork=1,2,....

STEP 4. Use Theorem 2.5.1 to find a subsequence {ux} and u €
Wol"(R") such that u; — u weakly in Wol"’(R") and u; — u strongly
in L?. Hence, conclude that u = 1 almost everywhere on K and that
u=0o0on R" - K.

STEP 5. Conclude from Theorem 2.1.4 that |K| = 0 and therefore
that u = 0.

STEP 6. Use the Banach-Saks theorem to find a subsequence {uy}
such that
2>
vj == tg
et

converges strongly to u in W, ?(R"). Thus, || Dyv,||, — 0 as j — oo.
But

mp(K) < A Do |Pdz

for each j = 1,2,....
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2.16.

2.17.

2.18.

In this problem we sketch a proof of the fact that v, ,(K) = 0 implies
H"Pt¢(K) = 0 whenever ¢ > 0. The proof requires soine elementary
results found in subsequent chapters.

STEP 1. For each pesitive integer i, there exists u; € C§°(R") such
that u; > 1 on a neighborhood of K and

/ \DuwPdr < L.
. >

Let v = 3.2, u, and conclude that v € W"P(R"). Also note that
K C interior {z : ¥(z) > k} whenever k > 1. Therefore, for z € K,

liminf%(z,7) = 00

r—0

where

v(z,r) = f v(y)dy.
B(z,r)
STEP 2. Forallz € K and e > 0,

lim supr”_"“‘/ | Du|Pdy = oco.
B(zr)

r—0

If this were not true, there would exist k < co such that
r”‘"_‘)[ |Dy|Pdy < k
B(z,r)

for all small » > 0. For all such r, it follows from a classical version
of the Poincaré inequality (Theorem 4.2.2) that

f lu(y) - o(z,r)|Pdy < CrP™" / [Du|Pdy < Cr*.
B(z,r) B(z,r)

Thus conclude that
[%(z,r/2) — B(z,r)| < Cre/p

for all small r > 0. Therefore, the sequence {T(z,1/27)} has a finite
limit, contradicting the conclusion of Step 1.

STEP 3. Use Lemma 3.2.1 to reach the desired conclusion.
At the end of Section 2.3 we refer to [AR?2] for the result that C*(f2)
is dense in W*?(Q2) provided §2 possesses the segment property. Prove

this result directly if the boundary of Q can be locally represented as
the graph of a Lipschitz function.

Show that C%1(St) = W1°°(Q) whenever 2 is a domain in R™.
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2.19. This problem addresses the issue raised in (2.6.6). If f € LP(R") and
ap < n, then Theorem 2.8.4 states that

"Ia * f"q < C"f“p

where ¢ = p*. A simple homogeneity argument shows that in order
for this inequality to hold for all f € LP, it is necessary for ¢ = p".
For § > 0, let 75f(z) = f(éx). Then

o+ (76 )l < 6721 fllp

and
I (15f)=6"15{Ia* f).

Hence,
o * (75)llg = 6™/, + fllq,

thus requiring

Historical Notes

2.1. It is customary to refer to the spaces of weakly differentiable func-
tions as Sobolev spaces, although various notions of weak differentiability
were used before Sobolev’s work, [SO2]; see also {SO1], (SO3]. Beppo Levi
in 1906 and Tonelli [TO] both used the class of functions that are abso-
lutely continuous on almost all lines parallel to the coordinate axes, the
property that essentially characterizes Sobolev functions (Theorem 2.1.4).
Along with Sobolev, Calkin [CA] and Morrey [MO1| developed many of
the properties of Sobolev functions that are used today. Although many
authors contributed to the theory of Sobolev spaces, special note should be
made of the efforts of Aronszajn and Smith, [ARS1], [ARS2], who made a
detailed study of the pointwise behavior of Sobolev functions through their
investigations of Bessel potentials.

2.2. Theorem 2.2.1 was originally proved by Rademacher [RA]. The proof
that is given is attributed to C.B. Morrey [MO1, Theorem 3.1.6]; the proof
we give appears in [S]. In our development, Rademacher’s theorem was
used to show that Sobolev functions remain invariant under composition
with bi-Lipschitzian transformations. However, it i8 possible to obtain a
stronger result by using different techniques as shown in [Z3]). Suppose
T : R® — R" is a bi-measurable homeomorphism with the onperty that
it and its inverse are in W'P(R* R"), p > n — L. If u € W,;;7(R™) where

loc

P =plp— (n— 1)}, then uoT € WL} (R"). With this it is possible to

loc

show that if u € M’,L: (R™) and T is a K-quasiconformal mapping, then
uoT € Wil (R").



Historical Notes 109

2.3. Theorem 2.3.2 is due to Meyers and Serrin, [MSE].

2.4. Theorem 2.4.1 is the classical Sobolev inequality [SO1], [SO2], which
was also developed by Gagliardo [GAl], Morrey [MO1], and Nirenberg
[NI2). The proof of Theorem 2.4.1 for the case p < n is due to Nirenberg
[NI2}.

2.5. Theorem 2.5.1 originated in a paper by Rellich [RE] in the case p =
2 and by Kondrachov [KN] in the general case. Generally, compactness
theorems are of importance in analysis, but this one is of fundamental
importance, especially in the calculus of variations and partial differential
equations. There are variations of the Rellich-Kondrachov result that yield
a slightly stronger conclusion. For example, we have the following result
due to Frehse [FRE]: Let 2 C R"™ be a bounded domain and suppose
u; € W'?(Q), 1 < p < n, is a bounded sequence of functions with the
property that for each i =1,2,...,

/ |DwifP~2Du; - Do dz < M[fllos

for all o € W1P(Q) N L*®(2). Then there exist u € W1?(Q) and a subse-
quence such that u; — u strongly in W'9(Q), whenever ¢ < p.

2.6. Potential theory is an area of mathematics whose origins can be traced
to the 18th century when Lagrange in 1773 noted that gravitational forces
derive from a function. This function was labeled a potential function by
Green in 1828 and simply a potential by Gauss in 1840. In 1782 Laplace
showed that in a mass free region, this function satisfies what is now known
as Laplace's equation. The fundamental principles of this theory were de-
veloped during the 19th century through the efforts of Gauss, Dirichlet,
Riemann, Schwarz, Poincaré, Kellogg, and many others, and they consti-
tute today classical potential theory. Much of the theory is directed to the
understanding of boundary value problems for the Laplace operator and its
linear counterparts. With the work of H. Cartan [CAR1j, [CAR2), in the
early 1940s, began an important new phase in the development of potential
theory with an approach based on a Hilbert-space structure of sets of mea-
sures of finite energy. Later, J. Deny [DE] enriched the theory further with
the concepts and techniques of distributions. At about the same time, po-
tential theory and a general theory of capacities were being developed from
the point of view of an abstract structure based on a set of fundamental
axioms. Among those who made many contributions in this direction were
Brelot [BRT], Choquet [CH], Deny, Hervé, Ninomiya, and Ohtsuka. The
abstract theory of capacities is compatible with the recent development of
capacities associated with non-linear potential theory which, among other
applications, is used to study questions related to non-linear partial differ-
ential equations. The first comprehensive treatment of non-linear potential
theory and its associated Bessel capacity was developed by Meyers [ME1],
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Havin and Maz'ya [HM), and Redetnjak [RES). Most of the material in
Section 2.6 has been adopted from [MEL1].

2.7. The co-area formula as stated in Theorem 2.7.3 was proved by Fed-
erer in [F1]. In the case m = 2, k = 1, Kronrod [KR] used the right side of
(2.7.1) to define the variation of a function of two variables. Fleming and
Rishel [FR] established a version of Theorem 2.7.1 for BV functious. An-
other version resembling the statement in Theorem 2.7.3 for BV functions
appears in [F4, Section 4.5.9).

The proof of the best possible constant in the Sobolev inequality (The-
orem 2.7.4) is due to Fleming and Federer [FF]. Their result can be stated

as follows:
|| Dl

"u"n/(n—l)

where the supremum is taken over all u € C§°(R"). Talenti [TA] extended
this result to the case p > 1 by determining the constant C(n,p) defined

by
C(n,p) = sup ——+ 1Dully
lellps

na(n) = sup

He showed that

1-(1/p) n 1/n
_ /2p~1/2 p—1 (1 + 3)(n)
Clnp) =" (n P) L‘(%)I‘(I:n_ﬁ) '

He also showed that if the supremum is taken over all functions which
decay rapidly at infinity, the function u that attains the supremum in the
definition of C(n,p) is of the form

u(z) = (a + bjz|P/(P-1)1-n/p

where a and b are positive constants. This leads to the following obser-
vation: in view of the form of the extremal function, it follows that if 0
is a bounded domain and if u € WJ"’ (2) has compact support, then by
extending u to be zero outside of (1, we have

lullp- < C(r, p)l| Dullp.

Brezis and Lieb {BL] provide a lower bound for the difference of the two
sides of this inequality for p = 2. They show that there is a constant C((, n)
such that

C(Q n)llullfg.c0) + NullZ. < C(n.p)lIDull3
where ¢ = n/(n ~ 2) and |lul|(g,00) denotes the weak L%-norm of u (see
Definition 1.8.6).

2.8. The maximal theorem 2.8.2 was initially proved by Hardy-Littlewood
[HL] for n = 1 and for arbitrary n by Wiener [WI]. The proofs of Theorem
2.8.4 and its preceding lemma are due to Hedberg {HE1].
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2.9. The proof of exponential integrability in Theoretn 2.9.1 is taken from
[GT] while the improved version that appears in Theorem 2.9.2 was proved
by Hedberg [HE1]. The question concerning sharpness of this inequality has
an interesting history. Trudinger [TR] proved (2.9.1) for Sobolev functions
in WEP n/p = k, with the power p' replaced by n’. However, whenn/p > 1,
Strichartz [STR] noted that Trudinger’s result could be improved with the
appearance of the larger power p’. The reason why Trudinger's proof did
not obtain the optimal power is that the case of £ > 1 was reduced to the
case of £ = 1 by using the result that if u € W*?, k > 2, kp = n, then
u € Whm. However, in this reduction argument, some information is lost
because if u € W*? then u is actually in a better space than W!". In fact,
by appealing to Theorem 2.10.3, we find that the first derivatives are in the
Lorentz space L(n,p) C L". This motivated Brezis and Wainger to pursue
the matter further in [BW| where Theorem 2.9.4 and other interesting
results are proved. The sharpness of the Sobolev imbedding theorem in the
case of critical indices was also considered in [HMT], where it was shown
that the space Wy " () could not be imbedded in the Orlicz space L,(1)
where (t) = exp(¢|*/ ("1 ~ 1).

The other question of sharpness of the inequality pertains to the constant
3 that appears in (2.9.4). It was shown in [MOS] that (2.9.4) remains valid
for # = nf/w(n - 1) in the case of Sobolev functions that vanish on the
boundary of a domain. The optimal result has recently been proved by
Adams [ADS8] where (2.9.4) has been established for § = n/w(n — 1) and
alta > 0.

2.10. Most of the material in this section was developed by Brezis and
Wainger [BW] although Theorems 2.10.1 and 2.10.2 and due to O’Neil [O].
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Pointwise Behavior of
Sobolev Functions

In this chapter the pointwise behavior of Sobolev functions is investigated.
Since the definition of a function u € W*P({2) requires that the k*"-order
distributional derivatives of u belong to LP(f2), it is therefore natural to
inquire whether the function u possesses some type of regularity (smooth-
ness) in the classical sense. The main purpose of this chapter is to show
that this question can be answered in the affirmative if interpreted ap-
propriately. Although it is evident that Sobolev functions do not possess
smoothness properties in the usual classical sense, it will be shown that if
u € W*P(R™), then u has derivatives of order k when computed in the
metric induced by the LP-norm. That is, it will be shown for all points
T in the complement of some exceptional set, there is a polynomial P, of
degree k such that the LP-norm of the integral average of the remainder
|u - P;| over a ball B(z,r) is o(r*). Of course, if u were of class C¥, then
the LP-norm could be replaced by the sup norm.

We will also investigate to what extent the converse of this statement is
true. To this end, it will be shown that if u has derivatives of order & in the
LP-sense at all points in an open set £, and if the derivatives are in LP(},
then u € W*(Q). This is analogous to the classical fact that if a function
u defined on a bounded interval is differentiable at each point and if ' is
integrable, then u is absolutely continuous. In order to further pursue the
question of regularity, it will be established that 1 can be approximated in a
strong sense by functions of class C¢, £ < k. The approximants will have the
property that they are close to u in the Sobolev norm and that they agree
pointwise with u on large sets. That is, the sets on which they do not agree
will have small capacity, thus establishing a Lusin-type approximation for
Sobolev functions.

3.1 Limits of Integral Averages of
Sobolev Functions

In this and the next two sections, it will be shown that a Sobolev function
u € W5P(Q) can be defined everywhere, except for a set of capacity zero,
in terms of its integral averages. This result is analogous to the one that
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holds for integrable functions, namely, if u € L!, then

f ) - @y —0 as r—o
B(z,r)

for almost all £ € R™. Since our result deals with Sobolev functions, the
proof obviously will require knowledge of the behavior of the partial deriva-
tives of u. The development we present here is neither the most efficient nor
elegant. These qualities have been sacrificed in order give a presentation
that is essentially self-contained and clearly demoustrates the critical role
played by the gradient of u in order to establish the main result, Theorem
3.3.3. Later, in Section 3.10, we will return to the subject of Lebesgue points
and prove a result {(Theorem 3.10.2) that extends Theorem 3.3.3. Its proof
will employ the representation of Sobolev functions as Bessel potentials
(Theorem 2.6.1) and the Hardy-Littlewood maximal theorem (Theorem
2.8.2).

In this first section, it will be shown that the limit of integral averages
of Sobolev functions exist at all points except possibly for a set of capacity
zero. We begin by proving a lemma that relates the integral average of u
over two concentric balls in terms of the integral of the gradient.

3.1.1. Lemma. Let u € W ?[B(zq,7)], p > 1, where zo € R" and r > 0.
Let 0 <6 <r. Then

—n 1 _
o / u(y)dy—5 / u(y)dy = ~r / (Duly)-(y—zo)ldy
B(zq.r) B(z0,6) n B(zo,r)

1
- =" Duly) - (y —
o0 /B (M)[ u(y) - (v — zo))dy
1
n = %] " [Du(y) - (v — Zo)ldy. 3.1.1
"/;(zo.r)—a(:o.b)‘y zo| " [Du(y) - (¥ — zo)ldy (3.1.1)

Proof. Define 4 on R! by
§m—pmt<$
pt) =St ™m—pmbs<t<r
0 t>r.
Define a vector field V by V(y) = u(ly — zo|)(y — To). Since u is the

strong limit of smooth functions defined on B(zg,r) (Theorem 2.3.2), an
application of the Gauss-Green theorem implies

[ utadiv vy = - / Du(y)- (y - zo)us(ly - Zo)dy. (3.12)
B(zg,r) B(xo,r)

An easy calculation of div V establishes equation (3.1.1). @]
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3.1.2. Lemma. Let £ be a posstive real number such that fp < n, p > 1,
and let u € WYP(R"™). Then

-n 1 —n
[ -ty <3 [ ly-aiDuwiay (319)
R" R"
for all z € R™.

Proof. (i) We suppose first of all that u vanishes outside a bounded set.
Let z € R" and for each positive integer j, define a C> vector field V; on
R" by

(£/2)(t—n)
] (v - 2).

1
Vily) = [3 +|y -z

Since |u| € W P(R") (by Corollary 2.1.8), |u| is therefore the strong limit
of smooth functions with compact support. Therefore, by the Gauss-Green
theorem,

[ avviwltolds == [ Vi) D(ub)ds
R» Rn
Moreover, since |[D(Ju|)| = |Du| a.e.,

[ avvwitia < [ oD, (614
Rn R™

By calculating the divergence on the left-hand side of (3.1.4) one obtains

) ] (/AE=n=2) n
/ [—. + |y — = ] [fly -z’ + —.] [u(y)ldy
R L) 2

1 LI
< [ 54w v~ = IDu(y)ldy.

The inequality (3.1.3) now follows, in this case, when j — oo.
(ii) The general case. Let  be a C™ function on R, suchthat 0 < 5 < 1,
n(t) =1 when t < 1 and 5(t) = 0 when t > 2. Define

u;(y) = u(y)n(5 7"yl
for y € R". By applying (i) to u; and then letting j — oo, one can verify
(3.1.3) in the general case. o

3.1.3. Lemma. Let ¢ be a positive real number and k a positive integer
such that (k+£—1)p < n. Then there ezists a constant C = C(n, k, £) such
that

[t <e 3 [ et peuay

laj=k
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Jor all z € R™ and all u € WF-P(R"),
This follows from Lemma 3.1.2 by mathematical induction. a

We are now in a position to prove the main theorem of this section
concerning the existence of integral averages of Sobolev functions.

3.1.4. Theorem. Let k be a positive integer such that kp < n,p > 1, let
be a non-empty open subset of R® and let u € W5P(Q). Then there erists
a subset E of Q, such that

Bio(E)=10
and
lim f u(y)d 3.1.5)
Ry (v)dy (

exists forallz € N - E.
Proof. (i) We suppose first of all that Q = R®. Define

g(y) = ) |D°u(y)| (3.1.6)

Jal=k

for y € R™. Then g € LP(R™). Let E be the set of all those points z of R™
for which

(Ix * g)(z) = oo (3.1.7)
Then, from the definition of Riesz capacity (Definition 2.6.2),
Rip(E) =0,
and therefore from (2.6.7),
By p(E) = 0.

Consider r € R" ~ E. By (3.1.1),

- -1 -
/B(z.l)u(y)dy -6 /B(z,a) u(y)dy = nL(:.l)[Du(y) (y - )ldy

= Lo ] (Du) - (v - D)dy
B(z,6)

n

1

T n '/5<Iy—:|<1 ly — z[""*[Du(y) - (y — z))dy. (3.1.8)

When k = 1, it follows from (3.1.6) and (3.1.7) that

[ = sl iDuaidy < o (3.1.9)
B(=x,1)
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When k > 1, it follows from Lemma 3.1.3 with £ = 1 and & — 1 substituted
for k, that

[ w-atmpawir<c T [ - e DDty
R" < R»
jal=k—1
which, by (3.1.6) and (3.1.7), is finite. Thus (3.1.9) still holds when & > 1.
By (3.1.9)
lim ly — z|""{Du(y) - (y — z))ldy (3.1.10)
6—0+ §<|y~zi<1

exists. It also follows from (3.1.9) that

lim y — z|'~"|Du(y)ldy = 0,
Am Bw)l I'="|Du(y)\dy
hence
6" / [Du(y) - (y — z)}dy — 0 (3.1.11)
B(z,6)

a8 § — 0+. It now follows from (3.1.8), (3.1.10), and (3.1.11) that the limit
in {3.1.5) exists.

(ii) The general case. Let 2 be an open set of R*. There exists an in-
creasing sequence {;} of non-negative C* functions on R", with compact
supports, and spt ¢; C 2 for all j such that the interiors of the sets

{x:z€R* and ¢,(z) =1}

tend to {2 a8 j — oo. Define

o _ [ea) ulz) zeQ

uj(z) = { 0 T g0
By applying (i) to each of the functions u,, one can easily prove the theorem
in this case. . a

3.2 Densities of Measures

Here some basic results concerning the densities of arbitrary measures are
established that will be used later in the development of Lebesgue points
for Sobolev functions.

3.2.1. Lemma. Let x4 > 0 be a Radon measure on RB™. Let 0 < A < 00
and 0 < a < n. Suppose for an arbitrary Borel set A C R™ that
I[[B(I, r)] > A

'-0

lim sup
r—0
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Jor each T € A. Then there is a constant C = C(a,n) such that
up(A) > CAHY(A).

Proof. Assume y(A) < oo and choose ¢ > 0. Let U D A be an open set
with 4(U) < oo. Let G be the family of all closed balls B(z,r) C U such

that B
reA 0<r<ez, MBEDI,
r

Clearly, G covers A finely and thus, by Corollary 1.3.3, there is a disjoint
subfamily F C G such that

Ac(U{B:BeFlJU[U{B:BeF~F)
whenever F* is a finite subfamily of F. Thus, by Definition 1.4.1,
é(B)\* o §(B)\*°
msc . (12) +o ¥ (42
Ber: Bex-r*

where §(B) denotes the diameter of the ball B. Since F C G and F is
disjoint, we have

> (42Y s T up)

Ber BeF
< CA'u(U) < 0.

a 6(B)\*
cs* Y. ( —~ )
BEF-F*
can be made arbitrarily small with an appropriate choice of 7*, we conclude

HE.(4) < CA~ (V).

Since p is a Radon measure, we have that u(A)} = inf{p(U) : U D A, U
open}. Thus, letting ¢ — 0, we obtain the desired result.

Since

3.2.2. Lemma. Let 4 > 0 be a Radon measure on R™ that is absolutely
continuous with respect to Lebesgue measure. Let

A=R"ﬂ{z:limsup“[ (7)) }

r—0

Then, H*(A) = 0 whenever 0 < a < n.

Proof. The result is obvious for a = 0, so choose 0 < a < n. For each
positive integer i let

A= R"ﬂ{x x| < i,limsup-“—[g;(_-:’—r)l > i“}
r—0
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and conclude from the preceding lemma that
p(A;) > Ci~ HY(4;). (3.2.1)

Since A; is bounded, u(A4;) < oo. Therefore H*(A;) < oo from (3.2.1).
Since a < n, H®(A;) = 0 and therefore |A;] = 0 from Theorem 1.4.2. The
absolute continuity of x implies u(A;) = 0 and consequently H%(A;) = 0
from (3.2.1). But A = U2, A;, and the result follows. o

3.2.3. Corollary. Suppose u € [P(R"),1<p<oo,andlet 0 < a<n If
E 15 defined by

E={z: limsupr“’/ |u(z)|Pdz > 02,
r—0 B(x,r)

then H*(E) = 0.

Proof. This follows directly from Lemma 3.2.2 by defining a measure 4 as

u(A) = /A lulPdz. o

3.3 Lebesgue Points for Sobolev Functions

We will now prove the principal result of the first three sections (Theorem
3.3.3) which is concerned with the existence of Lebesgue points for Sobolev
functions. We will show that if u € W5?(R"), then

lim lu(y) — u(z)|Pdz =0
)

r—0 B(z,r

for B p-q.e. x € R". This is stronger than the conclusion reached in Theo-
rem 3.1.4, which only asserts the existence of the limit of integral averages.
However, in case u € W'P(R"), the existence of the limit of integral av-
erages implies the one above concerning Lebesgue points. In this case, we
can use the fact that {u — p] € W,L‘f(R") for each real number p and then

apply Theorem 3.1.4 to conclude that

lim |uy) - pldy
r—~%4JB(z,r)

exists for By ;-q.e. £ € R™. Of course, the exceptional set here depends on p.
The object of Exercise 3.1 is to complete this argument. This approach fails
to work if u € W*P(R™) since it is not true in general that |u| € W5?P(R"),



3.3. Lebesgue Points for Sobolev Functions 119
cf. Remark 2.1.10.

3.3.1. Lemma. Let k be a non-negative integer and A, p real numbers such
thatp> 1, kp<n,and k <A <nfp. If

u € WF?(R"), (3.3.1)

then
srk f u(y)dy — 0 (3.3.2)
B(z,8)

as 6 — 0+, for all z € R™ except for a set E with By ,(E) = 0.

Theorem 3.1.4 states that tlie integral averages converge to a finite value
at all points in the complement of a By ,-null set. This lemma offers a slight
variation in that the integral averages when multiplied by the factor §*~*
converge to 0 on a larger set, the complement of a B ,-null set. At some
points of this larger set, the integral averages may converge to infinity, but
at a rate no faster than §—*.

Proof of Lemma 3.3.1. (i) Suppose k = 0. It follows from Corollary 3.2.3
that

oPr-n /B s |u(y)Pdy — 0 (3.3.3)

as § — 0+, for all z € R" except for a set E with H*~*P(E) = 0. From
the definition of Hausdorff measure, for ¢ > 0 there is a countable number
of sets {E;} such that E C UE; and &(diam E;)"~*? < ¢. Each E; is
contained in a ball B; of radius r; where r; = diam E;. Therefore, with the
aid of Theorem 2.6.13,

Brp(E) <Y Bay(E)<CY P < Ce.
i=1

i=1

Since € is arbitrary, we have that Bj ,(E) = 0.
Now consider x € R — E. From Holder’s inequality, there is a constant
C = C(n,p) such that

/ u(y)dy
B(z,6)

(8.3.2) now follows from (3.3.3) and (3.3.4), and (i) is established.
(ii) Now suppose k > 0. Let E be the set of all = for which

./;1» ly — " [Z |D°u(y)|] dy = oo. (3.3.5)

lat=k

6A—n

1/p
<C [6"*"" / Iu(y)l”dyJ . (3.3.9)
B(z,8)
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Then Ry ,(E) =0 and therefore B) ,(E) = 0 hy (2.6.8).
Consider z € R — E. When k = 1, it follows from (3.3.5) that

[ =Pt Dutyldy < oo (3.3.6)

When k£ > 1, we replace £ by A —k + 1 and k by £ -1 in Lemma 3.1.3 and
again derive (3.3.6) from (3.3.5). For z € R" ~ E, we now show that

&+ / ly - z]'~"|Du(y)|dy — 0, (3.3.7)
§<|y—zi<1
as 6 | 0. Let r € (0,1) be arbitrary. Clearly
P weaiDugi -0 (338
r<ly—z|<1
as § | 0. When 0 < § < r we have

5+ / ly - 2/~ Du(y)ldy < / ly = z*~**1-"| Du(y)|dy.
s<|y—z|<r B(z,r)

(3.3.9)
It follows from (3.3.6) that the right-hand side of (3.3.9) approaches zero
as r | 0. (3.3.7) now follows from (3.3.8) and (3.3.9).
Clearly,

/ ly — z| | Du(y)|dy < oc. (3.3.10)
B(z,1)

Since A — k — n < 0, it follows that

ot [ - sliDuidy s [ - s Dy,

B(z,5) B(z.8)
go that by (3.3.6),
gr-k-n / ly — z| | Du(y)|dy — 0 (3.3.11)
B(z.8)

as 6 | 0. By putting r = 1 in Lemma 3.1.1, one can obtain (3.3.2) from
Lemma 3.1.1, (3.3.10), (3.3.11), and (3.3.7). O

3.3.2. Theorem. Let £,k be integers such that k > 1,0 < k < ¢ and
€p<n,p>1 Let uec WEP(R") and for each z € R™ and r > 0 put

Uy = f u(y)dy.
B(z,r)

Then
r(l—k)pf [us(y) — tz.r|Pdy — O (3.3.12)
B(z,r)
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asr | 0, for all z € R except for a set E with By ,(E} = 0.

Proof. We proceed by induction on k. Suppose to begin with that & = 0.
It follows from Corollary 3.2.3 that

r"""/ [u(y)|Pdy — O (3.3.13)
B(z,r)

for all z € R™, except for a set E' with H® % (E’) = 0 and therefore
Byy(E')=0. (3.3.14)

We now have, for z € R® — F,

1/p g
(=(n/p)) / lu(y) — ug s Pdy| < r-v/P) / lu(y)Pdy
B(:,") B(Z,T)

1/p
1=y, | / dyl . (3.3.15)
B(z,r)

But by Lemma 3.3.1,
Hug, =0 (3.3.16)

asr | 0, for all £ € R™ except for a set E” with By p(E") = 0. (3.3.12) now
follows from (3.3.13), (3.3.15), and (3.3.16) in the case k = 0.

Now suppose that & > 0 and that the theorem has been proved for all
functions of W*~1.7(R"™). Let u € W*P(R™). By the Poincaré inequality,
which we shall prove in a more general setting later in Chapter 4 (for
example, see Theorem 4.4.2),

r(t=kip= [ (6(s) ~ usolPy < OG0 [ Dugy)lray,
B(z,7) B

(z.7)
(3.3.17)
for all z € R", where C depends only on n. By the induction assumption,

there exists a set F”, with
Bep(F')=0 {3.3.18)

and
ple-(k=Dlp-n / (Ditly) — (Dyu)zs [Pdy — 0 (3.3.19)
B(z,r)

asr | 0, for all z € R™ — F'. But

1/p
[/ IDiU(y)l”dy] < [/ |Diu(y) — (Diu).r[Pdy
B(z.r) B(z.r)

1/p
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1/p
+ |(Dits)z| [/ dy] , (3.3.20)
B(z,r)
and by Lemma 3.3.1
r&= =Y (Diu)y, — 0 (3.3.21)
asr | 0, for all z € R", except for a set F” with
B, (F"')=0.

(3.3.12) now follows from (3.3.17), (3.3.19), (3.3.20), and (3.3.21). This
completes the proof. a

3.3.3. Theorem. Let k be a positive integer such that kp < n, let  be an
open set of R™ and let u € WEP(Q). Then

][ [u(y) — u(z)|Pdy — 0 (3.3.22)
B(z,r)

as r | 0, for all x € R, except for a set E with By ,(E) = 0.

Proof. (i) When Q2 = R", (3.3.22) follows from Theorem 3.3.2 and Theorem
3.14.

(ii) When 2 is arbitrary, the theorem can be derived from (i) as in the
proof of Theorem 3.1.4. a

3.3.4. Corollary. Let k be a positive integer such that kp < n, let §} be an
open set of R™ and let u € W5P(Q). Then

lim |u(y)|Pdy exists and = |u(z)|? (3.3.23)
T—00+ B(I,T)

Jor all x € Q, except for a set E with By ,(E) = 0.

3.3.5. Remark. Theorem 3.3.3 states that on the average, the oscillation
of u at z is approximately equal to u(z) at Bg,-qe. x € Q. This can
also be stated in terms of the classical concept of approzimate continuity,
which will be used extensively in Chapter 5. A function u is said to be
approximately continuous at z if there exists a measurable set 4 such

that {B(zo,r) N Al
. FOTRE N
lim — =
r—0 |B(£L‘o,‘l‘)|

and u is continuous at ry relative to A. It is not difficult to show that if
u has a Lebesgue point at zp then u is approximately continuous at zo.
A proof of this 18 given in Remark 4.4.5. Thus, in particular, Theorem
3.3.3 implies that 4 € W}?(R") is approximately continuous at B, ,-q.e.
z € R".

1 (3.3.24)
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Approximate conttnuity is a concept from measure theory. A similar con-
cept taken from potential theory is fine continuity and is defined in terms
of thin sets. A set A C R" is said to be thin at 1y relative to the capacity

By, if
1 1/(p-1)
By ,[A N B(zy, r)]] dr
: T ¢ . 3.3.25

/o [ Bp[Blzorr)] r (3.3.26)

A function u is finely continuous at xg if there exists a set A that is thin
at zp and

:l_i_.rgo u{z) = u(zo).

z¢A
It follows from standard arguments in potential theory that A can be taken
as a measurable set. In the case of the capacity, B 3, which is equivalent
to Newtonian capacity, these definitions are in agreement with those found
in classical potential theory. In view of the fact that

|A] < C[Bk.p(A)]"/(““”’)
for any set A C R", it follows that (3.3.25) implies

|B(0,) N (R" - 4)]
A Blzo,")

=1,

and therefore fine continuity implies approximate continuity.

We now will show that the approximate continuity property of Sobolev
functions can be replaced by fine continuity. First, we need the following
lemnma.

Lemma. If {A,} is a sequence of sets each of which is thin at zo, then
there erists a sequence of real numbers {r;} such that

{J 4inB(zo, )
i=1

is thin at ;.

Proof. Because 4; is thin at zy, it follows that there exists a sequence
{r:} — 0 such that

By p[Ai N B(xq,74)]
Bk.plB(zﬂv L )]

We may assume the r; to have been chosen so that

—0 as i- 00

/" [Bk,p[Ai N B(zo, r)]] e dr o g-6+n
o Bi p[B(z0, 7)) r .
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Then,

/" [Bk,p[Ai N B(xo,r) N B(zg, 7‘.‘)]] 1/(p-1) dr
[ Bk.p[B(zD,r)] r

/r' [Bk.p[A.' N B(zp,r) N B(Io.r.-)]] 1/(p-1) dr
0 Bk-P[B(IOa r)] r

' Bk.p[Ai N B(zq,r) N B(IOsTi)] 1/(p-1) ﬁ
* ‘/" [ By ,[B(zq, )] ] r

A

1 ]l/(p—l) dr

1
9—(i+1) 4 Bk'p[A,nB(zo.ri)lll(p—l)/r [Cr“‘k”

r

A

) 1
—(i+1) _ 1/(p-1) -
2 + Bip[Ai N B(zo, 1)) G [1 Bk,p[B(Io,r.')]”("‘l)]

< 27 for r; sufficiently small.

Since capacity is countably subadditive, the result easily follows. O

For ease of exposition, we now restrict our attention to u € W' P(R").
Again, we see the important role played by the growth of the gradient in
order to obtain some regularity at a given point.

Theorem. Let 1o € R™, p > 1, and suppose u € W1P(R™) has the property

that Vip=1)
1 Lo
d
/ r”‘"/ |Du|Pdz Z <o
0 B(zo.r) r

Suppose also that

lim u(y)dy = u(xp).
r—0 B(zo,r)

Then u is finely continuous at xo.
Proof. For each ¢ > 0, let
A(zo,e) = R* N {z: |u(z) — u(zo)| > €}.

For r > 0, let
ve(x) = @ (2)[u(z) — T(2r)]

where @, is a smooth function such that ¢, = 1 on B(zg,r), spty, C
B(zo,2r), |Dyy| < Cr~! and where

u(2r) = / udz.
B(Io,?r)
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Because of the assumption @(2r) — u(zg) as r — 0, note that for all
sufficiently small r,

ve(z) 2€/2 for z € A(zp,e) N B(zp,7).
Therefore, by appealing to Exercise 2.8, which allows B),, to be expressed
in terms of a variational integral, there exists C = C(p,n) such that
Biold(@o,e) N Blzo.n < Ce [ |Dupz
B(zp,2r)
<Cey / \DufPdz
B(zo,2r)

+ (C2e7 2ty / fu — a(2r)[Pdz. (3.3.26)
B(zq,2r)

An application of Poincaré's inequality (cf. Theorem 4.4.2) yields
/ |« — @(2r)|Pdz < Cr? |Duj?dx
B(zq,2r) B(zq,2r)
and therefore (3.3.26) can be written as

B p|A(zo,€) N B(zo, 1))

< Celppm |DulPdr,
rn-F

B(Io ,21‘)

which directly implies that A(zxo,¢) is thin at zo. Now let ¢; be a sequence
tending to 0. By the preceding lemma, there is a decreasing sequence r; — 0
such that
o0
A = | J[A(zo.€;) N B(zo,7;))
i=1
is thin at zg. Clearly
:ll-n:lo u(z) = u(xg)
ZER"-A
and the theorem is established. 0

It can be shown that
1/(p-1)

1 _ dr
/ TP "/ | Du|Pdx — <0 (3.3.27)
0 B(xg.1) r

for By ,-q.e. o € R™ cf. [ME3]. Therefore, with Theorem 3.3.3, we obtain
the following.

Corollary. If u € W1?(R") then u finely continuous at all points except
for a set of By p capacity zero.
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Observe that Corollary 3.2.3 implies

limsuprP~" / |Du|Pdz =0 (3.3.28)
B(’o"‘)

r—0

for H"P-a.e. zo € R". Although (3.3.27) implies (3.3.28) for each g, the
exceptional set for the former is larger than that for the latter.

3.4 IP-Derivatives for Sobolev Functions

In the previous three sections, the continuity properties of Sobolev func-
tions were explored through an investigation of Lebesgue points and fine
continuity. We now proceed to analyze their differentiability properties. We
begin by proving that Sobolev functions can be expanded in a finite Tay-
lor series such that for all points in the complement of an exceptional set,
the integral average of the remainder term tends to 0, {Theorem 3.4.2). In
keeping with the spirit of this subject, it will be seen that the exceptional
set has zero capacity. Observe that Theorem 3.3.3 provides the first step
in this direction if we interpret the associated polynomial as one of degree
0 and the remainder at z as |u(y) — u(z))|.

When k, m are integers such that 0 < m < k, (k -~ m)p < n and
u € WKkP(R™), it follows from Theorem 3.1.4 that there exists a subset E
of R" such that

Bi_mp(E)=0 (3.4.1)

and
lim D%u(y)dy (34.2)

7=0% JB(z.r)

exists for all r € R" — E and for each multi-index a with 0 < |a| < m.
Thus, for all such z, we are able to define the Taylor polynomial P,(m) in
the usual way:

PM™(y) = Z $D"u(z)(y—x)°. (3.4.3)

0<(a)<m

(Recall the notation introduced in Section 1.1.) Observe that when u is a
C™ function on R™, Taylor’s theorem can be expressed in the form

1 1
= em ¥ 5[ [a-om

laj=m

- D®uf(1 - t)z + ty)dt] (y — 7). (3.4.4)

8.4.1. Theorem. Let 1 < m < k and suppose (k —m)p < n. Let u €
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W*P(R") and E be the set described in (3.4.1) and (3.4.2). Then

1/p
uly) — Pm) o _
[/B )~ P! (yn"dy] > / (1~

lal=m

1/p
-[r" / |D"u(y)—D°u(z)|”dy} dt (3.4.5)
B(z,tr)

and

1/p
[ /B . |u(y>—P,"""’(y)r’dy] D ] (1-ty

jaj=m

1/p
. [t'"/ |D°u(y)|"dy} dt, (3.4.6)
B(z.tr)
Jor all € R except for a set E' D E with Bx_p ,(E') = 0.

Proof. (i} Suppose first of all that v isa C™ function on R". Let r € R,
r > 0 and put B = B(z,r). Let ¢ be a function of L* (B) with lielp <1
where p’ is the conjugate of p. By (3.4.3) and (3.4.4),

[0 - P wletity = 3 Ta- o

laj=m

: [/B{D“u((l ~t)r + ty) — D%u(z)}y - x)“w(y)dy] dt.

Hence, by Hoélder's inequality,

' JICE P,("‘)(y)]v(y)dyl <rm / e

la[—m

1/p
. [/ |D%u({l - t)x + ty) — D"u(z)l"dy] dt.
B

By making the substitution z = z + t(y — z) in the right-hand side and
then taking the supremum over all ¢, one obtains (3.4.5).

The inequality (3.4.6) can be derived similarly.

(ii) Now let u be an arbitrary function of W*®(R"). By Theorem 3.3.3,
there exists a set E' D E, with Byx_m (E') = 0 such that

lim |D%u(y) — D%u(z)[Pdy =0 (3.4.7)
§—0+ B(z,8)
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when0< |a|<mandz € R* - E'.
Consider € R™ — E'. There exists a constant M (depending on x), such
that

f ID®u(y)|Pdy < M (34.8)
B(z,6)

for all |a] = m and all § > 0. Let {¢.} be a sequence of regularizers as
discussed in Section 1.6. Thus, ¢, € C§°(R"),

/ pe(z)dz =1, (3.4.9)
spt . C B(0,¢) and

sup @e(r) < Ce™™ (3.4.10)

zZ€ER

for all ¢ (where C depends only on n), while
(e * D%u)(z) — D%u(zx) (3.4.11)

ase | 0,for 0 <la|] < mand z € R® — E'. Put v, = ¢, » u. Each u, €
C°(R™)NW*»(R"). Let us denote by (3.4.5), and (3.4.6), the inequalities
(3.4.5) and (3.4.6) with u replaced by u.. Since u, is smooth we know
that (3.4.5), and (3.4.6), are valid. By (3.4.11) and Fatou’s lemma, the
lower-limit as € | 0 of the left-hand side of (3.4.5), and (3.4.6), is greater
than or equal to the left-hand side of (3.4.5) and (3.4.6). The result of the
theorem will thus follow from Theorem 1.6.1(ii) and Lebesgue’s Dominated
Convergence theorem when we show for each a with |a] = m and r > 0
fixed, that the following function of t, 0 < ¢ < 1, is bounded; that is,

t‘"/ |D*u(y)|Pdy < Mr® (3.4.12)
B(z,tr)

where M is independent of ¢.
We now proceed to establish (3.4.12). For any measurable subset E of
R", we have (when |a| = m)

[ iprutrda= [ } [ oety=0utara:
hence by (3.4.10)

4
dy,

»
/lD“u,(y)lpdySC”e—("’)/ [/ |D°u(z)|dz] dy. (3.413)
E E [/B(y.c)

Thus, when p > 1, we have by Holder’s inequality

p—1
f |D®u,(y)[Pdy < CPe~() / [/ |D°U(Z)|"dz] [f dz] dy,
E E |JB(y.c) B(y.e)
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so that
/ |D°u((y)|”dy§Ce'"/ / | D*u(2)[Pdzdy, (3.4.14)
E E JB(y.r)

where C depends only on n and p. When p = 1, (3.4.14) follows from
(3.4.13).

When tr < 3¢, we let E be the ball with center z and radius tr. Since
B(y,e) C B(x,4¢) when y € B(z,1r), (3.4.14) implics that

[ puragsce [ [ jpouts)pdady.
B(z.tr) B(z,tr) J B(z,4¢)

It now follows from (3.4.8) and (3.4.12) holds in the case where tr < 3¢.
When tr > 3e, we have

/ |D%u, (y)[Pdy = / D%, (y) Py + / D%, ()P dy
B(z,tr) B(z,3¢)

ey -zj<tr

and a double application of (3.4.14) yields

/ |D%uc(y)|Pdy < Ce_"/ / |D®u(2)|Pdzdy
B(z.tr) B(z,3¢) J B(x,4¢)

+ Ce"'/ / 1Du(z)|Pdzdy
3e<|y—z|<tr /B{y,c)

and by (3.4.8)

SC’tn‘l‘"‘f'CE_"/

Je<ly—z|<tr

<C'tr" + Ce'"/ [/ ]D“u(y){pdy] dw
B(0,c) 2¢<|y-z|<tr+e

./ [D%u(y)|Pdy < C"'t"r".
B(z,tr)

Thus (3.4.12) is established. a

/ |D®u(w + y)|Pdwdy
B(0,e)

so that

3.4.2. Theorem. Let 0 < m < k and suppose (k —m)p < n. Lel u €
WkP(R™). Then,

1/p
rom [f lu(y) - P (y)Pdy| —0
B(z.r)

asr |0, for all £ € R", except for a set F with
Br_mp(F)=0.
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This is the main result of this section. In particular, it states that the
integral average over a ball of radius = of the remainder term involving the
formal Taylor polynomial of degree k tends to 0 as r — 0 at a speed greater
than r* at almost every point. If a Taylor polynomial of smaller degree is
considered, the integral average tends to 0 at perbaps a slower speed, but
on a larger set.

Proof of Theorem 3.4.2. When m = 0, the theorem reduces to Theorem
3.3.3. Suppose m > 0. By Theorem 3.3.3,

f |D%u(y) — D%u(z){Pdy — O (3.4.15)

B(z,r)

as r | 0, for all [a| = m for all £ € R™, except for a set F with
Bi_mp(F)=0.

Consider £ € R® — F and an a with [af = m. Define

1/p

alr) = {r—"/ |D*u(y) — D®u(z)Pdy (3.4.16)
B(z,r)
for r > 0. By (3.4.15), n(r) — 0 as r | 0, hence
1
/ (1—¢t)™ 1n(tr)dt — 0 (3.4.17)
0

r | 0. The required result now follows from (3.4.16), (3.4.17), and Theoremn
34.1. 0

3.5 Properties of IP-Derivatives

In this section we consider arbitrary functions that possess formal Taylor se-
ries expansions and investigate their relationship with those functions that
have Taylor series expansions in the metric of L?, such as those discussed
in the previous section.

3.5.1. Definition. Let E C R". A bounded function u defined on E
belongs to T*(E), k > 0, if there is a positive number M and for each
z € E there is a polynomial P;(-) of degree less than k of the form

Ua(T
Pyy= Y T(l—)(y -z)% (up=u) (3.5.1)
la(20
whose coefficients u, satisfy

lua(z)| < M for z€E, 0Z5]al <k,
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and
ua(y) = D?Pr(y) + Ra(z,y)

whenever z,y € E and where Rq(z,y) < Cly — z|*~121, 0 < |a| < k.

The class t*(E) is defined as all functions u on E such that for each
z € E there is a polynomial P,(-) of degree less than or equal to k of the
form (3.5.1) such that for 0 < |a| < k,

D*Py(y) = D°Py(y) + Ra(z.y),
whenever z,y € E with |Ra(z,y)| < Cly — z)*~'°l and

lim -Ral@y)__
W g = oo

uniformly on E.

As a mnermonic, T*(E) and t*(E) may be considered as classes of func-
tions that possess formal Taylor series expansions relative to E whose re-
mainder terms tend to 0 “big O” or “lttle O,” respectively.

3.5.2. Remark. Clearly, if u € T*(E) then u, is locally Lipschitz on E,
0 < |a| < k. If E is an open set, note that the derivatives D%u exist on E,
0 < |al < k, and that

D%u{z) = D*Pp(z) = ua(z) for z€E.

Since |[D*P,(x)| < M for z € E, it follows that u € Wl":l"’(E') for every
p > 1. The space t*(E) may be considered as the class of functions on E
that admit formal Taylor series expansions of degree k. Of course, if E were
open and u € C¥(E), then u would have an expansion as in Definition 3.5.1
with ;

P:y)= 3 D%ulx)y-2)"

0<lal<k

Moreover, if u € C¥(R") and E C R", then the restriction of u to E,
u|E, belongs to t*(F) for each compact set F C E. One of the reasons for
identifying the class t*(E) is that it applies directly to the Whitney exten-
sion theorem (WH], which we state here without pruof. We will provide a
different version in Section 3.6.

3.5.3. Whitney Extension Theorem. Lef E C R™ be compact. If u €
t*(E), k > 0 an integer, then there ezists T € C*(R™) such that for 0 <
1Bl < k
DPa(z) = DPP.(z) forall T€E.
In view of this result, it follows that u € t*(E) if and only if u is the
restriction to E of a function of class C*(R™).
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We now introduce another class of functions similar to those introduced
in Definition 3.5.1 but different in the respect that the remainder term
is required to have suitable decay relative to the LP-norm instead of the
L>-norm. The motivation for this definition is provided by the results
established in Section 4 concerning Taylor expansions for Sobolev functions.

3.5.4. Deflnition. For 1 < p < oo, k a non-negative integer, and z €
R", T*?(z) will denote those functions u € L for which there exists a
polynomial P;(-) of degree less than k and a constant M = M(z,u) such
that for 0 < r < 00

1/p
(f Iu(y}—Pz(y)l"dy) < Mr*. (3.5.2)
B(z,r)

When p = co, the left side of (3.5.2) is interpreted to mean esssup, ¢ g, ,)
|u(y) — Pe(y)|- T*?(z) is a Banach space if for each u € T*?(z) the norm
of u, ||ul[px.s(z), i8 defined as the sum of [|ull,, the absolute value of the
coefficients of P, and the smallest value of M in (3.5.2).

3.5.5. Definition. A function u € T*?(z) belongs to t*?(z) if there is a
polynomial of degree less than or equal to k such that

1/p
(](B( )!u(y)—Pz(y)I”dy) =o(r*) as r—0. (3.5.3)

Note that if u € T*?(z) the polynomial P; is uniquely determined. To
see this write

u(y) = Pe(y) + Rz(y)

1/p
(f tR,(y)thy) < M+
B(z,r)

If P; were not uniquely determined, we would have u(y) = Q.(y) + R.(y),
where R, satisfies an integral inequality similar to that of R,.
Let S;(y) = P:(y) — Q:(y)- In order to show that S; = 0, first note that

-fB(:,r) 1S Wldy < (]i(z

Now let L. be the sum of terms of S of lowest order and let M, = S, —L,.
Thus, L, has the property that for each A € R}, L.(Ay+z) = AL, (y +1),
where a is an integer, 0 < a < k — 1. Since M is a polynomial of degree
at most k — 1, we have

where

1/p
IS,(y)I"dy) <Crf, 0<r<oo.

1)

F Mm@l sct, o<r<w.
B(z,r
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It follows from the inequality [L.(y)| < |S:(y)| + |Mz(y)| that

r°f |L:(y)ldy =
B(z,1)

- f 1L+ (9)ldy
B(z,r)

<Cr¥+Cr* !, 0<r<oo.

This is impossible for all small + > 0 if a < k — 1 and L, is non-zero. If
a =k —1, then M; = 0 and the term Cr*~! above can be replaced by 0.
A similar argument holds in case u € t*?(z).
Obviously, t*(E) C tk?(z) and T*(E) C T*?(z) whenever z € E and
p > 1. We now consider the question of the reverse inclusion. For this
purpose, we first need the following lemma.

8.5.6. Lemma. Let k be a non-negative integer. Then there exists ¢ €
CS(R™) with spty C {|z| < 1} such that for every polynomial P on R®
of degree < k and every € > 0,

pe*rP=P
where p.(z) = e "p(x/€).

Proof. Let V = C§°(B) where B is the closed unit ball centered at the
origin and let W denote the vector space of all m-tuples {y,} whose compo-
nents are indexed by multi-indices a = {0}, az,...,a,) with 0 < |a] < k.
The number m is determined by k and n. Define a linear map T:V — W

by
1) ={ [ eta)eis);

Yo = / o(z)zodz
Rn

where 0 < |o| < k and z° = z{'z3? - - - 2.

Note that vector space, range T, has the property that range T = W for
if not, there would exist a vector, a = {a,} orthogonal to range T. That
is,

thus,

Laaya =0 whenever y = {y,} € rangeT.
This implies,

/ p(x)L anz®dr =0 whenever p € V.
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Select n € V such that 3 > 0in {z : |z| < 1}. Now define ¢ by ¢ = Eaaz%9
and note that ¥ € V. Therefore,

/ (T 8az°)? n(z)dz = 0,

which implies £a,z® = 0 whenever || < 1. But this implies that all m
numbers a, = 0, a contradiction. Thus, range T' = W. In particular, this
implies there is ¢ € V such that

/ (z)dr = 1, / p(x)z®dz =0, 0<|a| Lk

Since any polynomial Q of degree no greater than k& is of the form

Qlz)= Y ba2®

0<)al<k

it follows that
/R" w(2)Q(2)dz = Q(0).

Given a polynomial P = P(z) as in the statement of the lemma, let z =
(r — y)/e and set Q(2) = P(z — £z) to obtain the desired result. ]

The next theorem is the main result of this section. Roughly speaking,
it states that if a function possesses a finite Taylor expansion in the LP-
sense at all points of a compact set E, then it has a Taylor expansion in
the classical sense on E. It is rather interesting that we are able to deduce
a L*-conclusion from a LP-hypothesis. A critical role is played by the
existence of a smoothing kernel ¢ that leaves all polynomials of a given
degree invariant under the action of convolution.

3.5.7. Theorem. Let E C R™ be closed and suppose u € T*?(z), 1 < p <
00, k > 0, with ||uflras(zy < M for all z € E. Then u € T*(E). Also, if E
is compact and if u € t*P(z) for all T € E with (3.5.3) holding uniformly
on E, then u € t*(E).

In view of Whitney’s Extension theorem (Theorem 3.5.3), note that a
function satisfying the second part of the theorem is necessarily the restric-
tion of a function of class C¥(R™). In the next section, we will investigate
Whitney's theorem in the context of LP.

Proof of Theorem 3.5.7. Let ¢ € C°(R™) be the function obtained in
Lemma 3.5.6 such that
@ * P(z) = P(z) (3.5.4)
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whenever P is a polynomial of degree less than k, ¢ > 0, and £ € R". Note
that (3.5.4) implies

D%, + P(z) = g * D*P(z) = D®P(x). (3.5.5)

Since u € T*?(zy) for all o € E, we have for zg and z € E,

u(y) = Pz (y) + R(zo. y) (3.5.6)
and
u(y) = P:(y) + R(z,y) (3.5.7)
where
i/p
(/ IR(I"y)I”dy) < M, (3.5.8)
B(z*,r)

with z* either £y or z. Now let £ = |z — z¢| and for 0 < |8| < k consider
I = DPy, * u(x).

For each fixed z € R", define R, as R,(z) = R(z,x) whenever x € R".
From (3.5.6) and (3.5.5) it follows that

I=DPp, * P, (z) + DPp, % Ry, ()
= D‘SP,D (z) + D‘gqp, * R, (7).

Similarly, using (3.5.7) and (3.5.5), we have

I = DPP.(z) + DPyp, « R;(x)
= ug(z) + D¢, * R (z).

Therefore,

DﬁP,_.(a:) = Dﬁon(z) + [DBWC * (R, — R.))(z)
= DPP, ()

+ /e-(n+|ﬁl)Dﬁ‘p [(i}@] [R(z0,4) — R(z,y)ldy.

Because ¢ = 0 on |z| > 1, the last integral is taken over B(z,e). Since
B(z,€e) C B(zo,2¢), the integral is dominated by

c [f | R(zo, y)|dy + f |R(z, y)ldy] el (3-5.9)
B(x0,2¢c) B(x,e)

where C depends on an upper bound for {D?¢|. Jensen's inequality and
(3.5.8) implies that (3.5.9) is bounded by CMe*~, thus proving u €
T*(E).
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A similar proof establishes the second assertion of the theorem. Indeed,
as before we obtain
DPP.(z) = DPP,,(z) + [DPy. « (Rsy — R:)](x)
= DPP, (z)

+ /5_(..+m|)Dﬁw[(_z:_y)] [R(zo0,y) — R(z,y)ldy

f [R(zo, y)ldy + ][ IR(x,y)ldyJ e~ 181,
5(10125) B(:,E)

Since (3.5.3) is assumed to hold uniformly on E, for n > 0 arbitrary, the
last expression is dominated by ne*~ 18 = q|z — z4)* 18! provided |z — zo|
is sufficiently small. The compactness of £ is used in this case to ensure
that |Rs(z,y)| < Clz — y|*~'8! whenever z,y € E. a]

<C

3.6 An [P-Version of the Whitney Extension
Theorem

We now return to the Whitney Extension Theorem (Theorem 3.5.3) that
was stated without proof in the previous section. It states that for a com-
pact set E C R®, a function u is an element of ¢*(E) if and only if it is the
restriction to E of a function of class C¥(R"). The result we establish here,
which was first proved in [CZ], is slightly stronger in that the full strength
of the hypothesis u € t*( E) is not required. Instead, our hypothesis requires
that u € ¢¥?(z) for all z € E with (3.5.3) holding uniformly on E.

We begin by proving a lemma that establishes the existence of a smooth
function which is comparable to the distance function to an arbitrary closed
set.

3.6.1. Lemma. Let A C R™ be closed and for £ € R™ let d(z) = d(z, A)
denote the distance from = to A. Let U = {z : d(z) < 1}. Then there is a
Junction § € C>®(U — A) and a positive number M = M(n) such that

M7'd(z) < 6(z) < Md(z), z€U-A,
|D?6(z)| < Cla)d(z)™ 1!, zeU-A, |of >0.

Proof. Let h(z) = 35d(z), T € U — A, and consider a cover of U — A by
closed balls {B(z, h(x))}, with center z and radins k(r), z € U — A. From
Theorem 1.3.1 there is a countable set § C U ~ A such that {B(s, k(s)) :
s € S} is disjointed and

R" — AD {UB(s,5h(s)): s € S} DU - A.



3.6. An LP-Version of the Whitney Extension Theorem 137

Witha=F=10and A = we infer from Lemma 1.3.4 that

20‘

% h(z)/h(s) <3 for s€S,. (3.6.1)
Let 6(z) = H°(S,;) < C(n) and let : R' — [0, 1] be of class C™ with
nt)=1fort <1, n(t)=0"fort>2

Now define ¥ € C®(R") by ¥(z) = n(|z|) and v, € C®(U) by

(
vs(7) = h()¢[5h( } for seS, zel.

Note that spt v, C B(s, 10h(s)), v, = h(s) on B(s, 5h(s)) and from (3.6.1)
that

|D°v,(z)] < h(s)N(a)[5h(s)] !
< 5—!a|3[0‘—1~(a)h(r)1"|"r for s € S;,

where N(a) is a bound for |[D?¢], |8| < |a|. Now define

é(z) = Zv,(z) = Z Up(z) for z €U

2€S 8€S,

Clearly,
i‘é—;)- = -h—(;—) < 6(x) < 3(z)h(z) = %Q(x)d(z)
and

|D*6(z)| < 571°13le-29(z)N(a)h(z)! 1!, for zeU-A O

The following is only a prelude to the LP-version of the Whitney exten-
sion theorem, althougl its proof supplies all of the necessary ingredients.
Its hypothesis only invokes information pertaining to the spaces T*?(z)
(bounded difference quotients) and not the spaces t*?(z) (differentiabil-
ity). In particular, the theorem states that if u is Lipschitz on A (the case
when k = 1) then u can be extended to a Lipschitz function on an open
set containing A. This fact is also contained in the statement of Theorem

3.5.7.

3.6.2. Theorem. Let A C R™ be closed and let U = {z : d(z,A) < 1}.
If ue LP(U), 1 < p < o0, and there is a positive constant M such that
Nellresxy < M for all € A, where k is a non-negative integer, then there
ezists T € C*~LY(U) such that DPtu(z) = DPP.(z) forz € A,0< |0 < k.

Proof. Let § denote the function determined in Lemma 3.6.1. Defined = u
onAand forz e U — Alet

a(z) = 4(s) * u(r) (3.6.2)
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where ¢ is the function determined by Lemma 3.5.6 and where

oste) (¥) = 6(z)"0 (ﬁ) .

Thus, % is defined at z as the convolution of ps(;) and u evaluated at .

Because both y and 6 are of class C™ it is easily verified that T € C™°(U—
A). For £ € U, let z* be a point in A such that |z — z*| = d(z) = d(z, A).
Because u € T*P(z) we may write

u(z) = Pee(z) + Rye (T) (3.6.3)

1/p
(][ | Rz (z)["dz) < Mrk,
B(z*,r)

By substituting this expression into (3.6.2), we obtain

where

DPa(z) = DP [ps(z) * Pe+(z)] + DP [p5z) * Rae (7))
= (DPpg(z) * Po-(z) + / Rg(z,y) Rz (y)dy

= st + (DPPes)a) + [ Rl y) R )y (3.6.4)

where Rg(z,y) = DP{6(z) "¢[(z — y)é(z)"']}. Applying Lemuma 3.5.6 to
the first term on the right side of (3. 6 4) we obtain

DPi(z) = DPPee(a) + [ Raoi)Reoldy.  (369)

We wish to estimate the remainder term in (3.6.5) which requires an anal-
ysis of Rg{r,y). It can be shown that

IRs(z, )| < C(B)d(z)~"1Al

and consequently

| f Rs(z,y)R )dy‘ < C(Byd(z) ﬁa . |Re- (y)dy.  (3.6.6)

z,6)

Because §(z) is comparable to d(z) (Lemma 3.6.1) and |z — z*| = d(z), it
follows that B(z,6(z)) C B(z*, Kd(z)) for some K > 0. Therefore from
(3.6.3) and Hdlder’s inequality,

/ |Ra (v)ldy < M{Kd(z)]"+* (36.7)
B(z* , Kd(z)
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which along with (3.6.5) and (3.6.6) implies,
DPu(z) - D P,.(z) = Ss(z*, z) (3.6.8)
where
1Ss(z*, )| < C(8, k)M |z — z*|*~ 1L,

We emphasize here that for given z € U — A, (3.6.8) is valid only for z* € A
such that d(z) = |z — z*|. We now proceed to establish the estimate for
arbitrary z* € A.

By assumption Ilu[lT.,,(,) < M for all € A. Therefore, we may apply
Theorem 3.5.7 to conclude that u € T*(A). Thus, if ] € A,

Pre(z%) = u(z®)
and
D°P,.(z*) = D"P,: (z*) + Ralz},2%), 0<]a|<k (3.6.9)

where
|Ra(z],2")] < C(a,k)M|z* - zj|*~ 1.
By Taylor’s theorem for polynomials, it follows that

k-1-i8{

D?P,.(x)= Y

la]=0

1

aDﬂ“’P,. (z*)(z — z*)°.

Thus, by (3.6.9) and Taylor's theorem,

k-1-18|

DPP,.(z) = Z %[Dﬁ‘“’P,;(x')+Ra+g(r;,z‘)](z—z‘)°
|a|=0 '
k—1-|0t 1 k—1—(lal+|B]) 1
= > S| X DR -5y
lajJ=0 Yvi=0 r
+ Rayp(zt,z°))(z — 2°)°. (3.6.10)

By Taylor's theorem, it follows that
1 . .
DPP,. (1) = Z ;”!Dﬁ+apx;(1'1)(z - )"
laj20
Therefore, since

|z —z*| < |z —z}| and |z* —z}| < |z* — 7| + Jz — 23] £ 2|z — z},
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(3.6.10) becomes (after some algebraic simplification)

(k-n-lal -
l . L . _
DPPe() - Y =DP*Py(ai)z - i) = Oflz — zf*19).
|at=0

It follows from (3.6.8), that

(k=1~181 |
Dfg(z)- Y a—,D"*"Pz; (z3)(z — z3)* = O(jz — z}|*~1#))
|a}=0 )
or
DPu(z) — DPP,; (z) = O(|z — z}[*~1#)). (3.6.11)

Thus, (3.6.11) holds whenever 2 € A and T € U — A4 and Theorem 3.5.7
implies that it also holds with D?%(z) replaced by ug(z) whenever z €
A. This implies that D?% is a continuous extension of uz and that this
extension has a Taylor series expansion about each point in A. Since U €
C>®(U - A) it now follows that @ € C*~(U).

In order to prove that & € C*~1}(U) it suffices to show that D% is
Lipschitz, || = k — 1. We know from (3.6.11) that ifa € A,and |f] = k-1

|DP%(z) — DPu(a)] < C(k)M|z — a] (3.6.12)

for z € U. Therefore, it is necessary to consider only the case z,y € U — A,
First suppose |z — y| > 1d(y) and let a € A be such that d(y) = la — y.
Then, |a — y| < 2z — y| and

|z —a| < |z —y|+ly—a| <3z -yl
Thus, utilizing (3.6.12),
[DP5(z) - DPu(y)| < |DPu(z) — DPu(a)| +|DPu(y) — D u(a)|
< |D%a(z) - D?u(a)} + |Du(y) - DPu(a)|
< Ck)Mlz - al + |y —a]]
<5C(kEYM |z — y|.
Finally, suppose |z — y| < 3d(y) and d(y) = |a — y|. Using (3.6.5) with
|B]| = k —1 and the Mean Value theorem, we have
ID%5(2) - D%5(w)| = [ R(o,2)[Ra(a,2) - Raly, )] ds
<lz -y / D, Ry(0, 2)] |R(a, 2)|dz (3.6.13)
where g is a point on the line segment joining z and y. Now spt Rg(zo,y) C
B(Io,&(l‘o)) and 6(1‘0) < Cd(z‘o) Thus,
|DzRg (20, 2)| < C(B)d(za)™" ",



3.6. An LP-Version of the Whitney Extension Theorem 141

(18] = k& — 1). Therefore, (3.6.13) implies

ID*5(z) - D*aty)] < C(6)ke - wldzo) ™ [ IR(a, 2)ldz.
B(z0.Cd(z0))
(3.6.14)
Since Lip(d) = 1, we have
1
2d(z0) 2 d(z) 2 d(y) — |z = y| > 7d(y) > |z - yl.
IfzeU, lZ - :Eol < Cd(:l:o), then
Jz — a| < |z - Zo| + |20 — q
< Cd(zo) + |7 - o
< Cd(zo) + |70 — y| +d(y)
< Cd(zo) + |z — y| + d(y)
< Cd(zo) + d(zp) + 2d(z0).
That is,
B(zo,Cd(z0)) C B(a, (C + 3)d(z0)).
Therefore, reference to (3.6.7) implies
/ |R(a, 2)ldz < Cld(zo)]"**
B(z0,Cd(z0))
and this, along with (3.6.14) completes the proof. a

This proof leads directly to the following which is the Whitney extension
theorem in the context of t*P(z) spaces.

3.6.3. Theorem. Let A C R™ be closed and let U = {z : d(z,A) < 1}. If
ue LP(U), 1 <p< oo, and u € thP(z) for all z € A with (3.5.3) holding
uniformly on A, then there ezists i € C*(U) such that DPu(z) = DP P,(z)
forz e A, 0< |8 <k

Proof. The proof is essentially the same as the one above with only minor
changes necessary. For example, the polynomials in (3.6.8) and (3.6.9) are
now of degree k and the remainders can be estimated, respectively, by

Ss(z",2)| < of|z - z*|*7)

and
|Ra(z},2°)| < of|z* ~ 371y,

thus allowing (3.6.11) to be replaced by
DPa(z) - D*Py; (z) = of|z ~ z§[*12).

The remainder of the argument proceeds as before. ]}
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3.7 An Observation on Differentiation

We address the technicality of showing that ||ullze.(;) is a measurable
function of z and then establish a result in differentiation theory that will
be needed later in the sequel.

3.7.1. Lemma. Let u € T*P(z) for all T in a measurable set E. Then,
lu|l7s.p(z) i @ measurable function of z.

Proof. Recall that the norm ||u||pe.s(;) i8 the sum of the numbers ||ul|,,

|DP.(z)], 0 < |a] < k-1, and the p*! root of

supr ~*P f lu(y) = P(y)|Pdy.
r>0 B(z,r)

Also recall that D*P,(z) = u,(z). To show that D®P,(z) is measurable
in z consider the function ¢ of Lemma 3.5.6 and define

U (z) = e * u(z).
If we write u(y) — P:(y) = R:(y), then
Duuz(x) = Da(ﬂpc * P:)(x) + Da(‘Pc * R,)(I)
= D°P,(z) + / g~(n*labpey [g] R.(z — y)dy.

The above integral is dominated by
CE-(n+|ol) / |Rz(1‘ - y)Idy < CE—(n+|a|)Ek+n
B(z,e)

=Ce*1*l 50 as e —0.

This shows that D®P,(z) is the limit of smooth functions D?u(z) for all
z € E, and is therefore measurable. The remainder of the proof is easy to
establish. a

3.7.2. Lemma. Let u € LP(R™), 1 < p < 00, be such that for some C,

a>0andallr >0,
1/p
(][ |u(y)s"dy) <cr,
B(z,r)

for all z tn e measurable set E C R™. Then, for almost all x € E,

1/p
(f |u(y)i"dy) =o(r*) as r]0.
B(z,r)
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Proof. Without loss of generality we may assume that E is bounded and
that u has compact support. Given ¢ > 0, let A C E be a closed set such
that |E — A| < e. Let U be the open set defined by

U={z:d(z,A) < 1}.

It will suffice to establish the conclusion for almost all z € A.
First, observe that the hypotheses imply that

lim |u(y)|dy =0
=0 JB(z,r)

for z € A and therefore, u = 0 almost everywhere on A.
Let h(z) = i%d(x,A). Recall from Theorem 1.3.1 that there is a count-

able set § C U — A such that {B(s, h(s)) : s € §} is disjointed and
{UB(s,5h(s)):s€ S} DU - A.

Therefore, since u = 0 almost everywhere on A,

vl
dydr < // L) .
//ulz— i voalz—yrte
5/ / [u(y)|dy uly)ldy
-es B(s.5h(s)) 1T — YI"*®
_Z/ u y)|medy. (3.7.1)

265 Y B(2.5h(s))
Let z, € A be such that |s — z,{ = d(s, A) = d(s). Hence, B(s,5h(s)) C
B(z,,|s - z,| + 5h(8)) and |s — z,| = d(s) = 10A(s). By Jensen's inequality
and the hypothesis of the lemma

1/p 1/p
f |u| < / P} <C f lulP] < Ch(s)®.
B(s,5h(s)) B(s,5h(2)) B(z,,154(s))

(3.7.2)
Now for z € A, y € B(s, 5k(s)), we have

|z =yl 2 |z — s| = |8 - y| 2 d(s) — 5h(s) = Sh(s).

Hence, for y € B(s,5h(s)) we estimate by spherical coordinates with origin

at y,
oo
/ ——ir—,r < C/ r % 14y
alx—yln+e )5h(s))

< C(a)h(s)"".
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This, along with (3.7.2) yields

/ / l"“’ﬂ' Y gydz < Cla)h(s)™.
B(ssh(eyy 1T — Y|t

Since {B(s, h(s)) : s € S} is disjointed, it follows from (3.7.1) that
lu()l n
dydz < C(a) S~ h(s)" < 00
N A (@2
and therefore,
|u(y)ldy
vz —yl"*e

for almost every £ € A. Clearly,

/ |u(y)dy <o
rr-u T =yt

for all £ € A, and therefore

/ lu(y)ldy < oo
R

n lz — y|n+a

for almost all z € A.
An analysis of the argument shows that this was established by using

only the fact that
f lu| < Cre.
B(z,r)
If we apply the above argument with v = |u|?, our hypothesis becomes
f lv(y)ldy < Cro?
B(z,r)
for all z € E and therefore
»
o> / byldy _ / u(y)Pdy
rr [y —zI**9P  Jpa |y —z|nrop

for almost all € E. But, for all such z, and for £ > 0,

Pd
/ M!—y <e forallsmall > 0.
B(z,r) Iy - xl"‘”m

1/p
(f |u(y)|*’dy) <ere

for all small r. (m]

That is,
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3.8 Rademacher’s Theorem in the LP-Context

Recall the fundamental result of Rademacher which states that a Lipschitz
function defined on R™ has a total differential at almost all points (Theorem
2.2.1). We rephrase this result in terms of the present setting by replacing
the hypothesis that u is Lipschitz by u € T*?(z) for all z in some set E.
If k = 1 and p = oo, this yields the usual Rademacher hypothesis. The
conclusion we will establish is that u € t*?(z) for almost all z € E.

3.8.1. Theorem. Let u € T*?(z) for all z € E, where E C R" is measur-
able, k a non-negative integer and 1 < p < oc. Then u € t¥®?(z) for almost
allz e E.

Proof. By Lemma 3.7.1 and Lusin’s theorem we may assume that E is
compact and that ||ullrss;) < M for all z € E. Since u € T*?(z) for
z € E, we may write u(y) = Pr(y) + R.(y) where P; is a polynomial of
degree less than k& and where

1/p
(]( IR,(y)l”dy) <Mr* r>0. (3.8.1)
B(z,r)
From Theorem 3.6.2 it follows that there exists an open set U O £ and
% € C*~11(U) such that
Df%(z) = DPP,(z), 0<|8]<k. (3.8.2)

Because @ is of class C*~ 111 it follows from Theorem 2.1.4 that @ € W P(R")
and therefore we may apply Theorem 3.4.2. Thus, for almost all z € R",
there is a polynomial Q: of degree at most k such that @(y) = Q. (y)+Rz(y)
where

/p
(_7[ |l—iz(y)|”dy) =o(r*) as r|o0. (3.8.3)
B(z.r)

Because @ € C*~'(R"), the argument following Definition 3.5.5 implies
that
D%u(z) = DPQ.(z), 0<|B| <k (3.8.4)

Therefore, in view of (3.8.1), (3.8.2), and (3.8.3)

1/p
]( lu-zP) <crf
B(z,r)

for almost all r € E. Appealing to Leinma 3.7.2 we have

1/p
(f Iu—-ﬁl”) =o(r*) as 710
B(z,r)
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for almost all £ € E. Consequently, for all such =z,

1/p 1/p
(f lu(y) — Q:(y)l”dy) < (f lu(y) — ﬁ(y)l"dy)
B(z.r) B(z.r)

1/p
+ f u(y) — Q- (y))¥d
( B(z,r)l (v) (y)l y)

<o(r*) as r—0,

thus establishing the result. 0

3.9 The Implications of Pointwise Differentiability

We have seen in Section 4 of this chapter that Sobolev functions possess
LP-derivatives almost everywhere. This runs parallel to the classival result
that an absolutely continuous function f on the real line is differentiable
almost everywhere. Of course, the converse is false. However, if it is assumed
that f' exists everywliere and that |f’| is integrable, then f is absolutely
continuous (Exercise 3.16). It is natural, therefore, to inquire whether this
result has a counterpart in the multivariate L? theory. It will be shown
that this question has an affirmative answer. Indeed, we will establish that
if a function has an L” derivative everywhere except for a small exceptiosal
set, and if the coeflicients of the associated Taylor polynomial are in L7,
then the function is in a Sobolev space.

We begin the investigation by asking the following question. Suppose
u € LP(R™) has LP-derivatives at * € R™; that is, suppose u € t¥?(z)
where & is a positive integer. Then, is it possible to relate the distributional
derivatives of u (which always exist) to the LP-derivatives of u? The first
step in this direction is given by the following lemma. First, recall that
u € t5?(z) if there is a polynomial P, of degree k such that

1/p
(](B( )Iu(y)—Pz(y)I”dy) =o(r*) as r—0, (3.9.1)

and u € T5?(z) if therc is a polynomial P, of degree less than k and a
number M > 0 such that

t/p
(][ lu(y) - Pz(y)l”dy) <M, 0<r <o
B(z,r)

3.9.1. Lemma. Suppose u € LP(R™), p > 1.
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(i) If u € T*?(z), then
lixln iglf e * D7u(y) > —oo,

with |z — y| < t, and where D®u denotes the distributional derivative
of u,0< |a| <k;

(i) If u € th?(x), then

limsup ¢ « D%u(y) = D? P (),
t—0

with [z -yl <t,0< |e| <k

The function o, above is a mollifier as described in Section 1.6. Since
vt € C§°(R"), its convolution with a distribution T is again a smooth
function. Moreover, for small t and |y —z| < t, the quantity ¢, « T'(y) gives
an approximate description of the behavior of T in a neighborhood of z.
Indeed, if T is a function, then

limsup @, *T(y) = T(z)

lv‘—:toSt
whenever r is a Lebesgue point for T. This will be established in the proof of
Lemma 3.9.3. Very roughly then, the statement in (ii) of the above lemma
states that, on the average, the behavior of the distribution D%u near z
is reflected in the value of the coefficient, D*P.(x), of the Taylor series
expansion.

Let F(y.t) = pe+u(y). F is thus a function defined on a subset of R**!,

namely R™ x (0, 00) and is smooth in y. The lower and upper limits stated

in (i) and (ii) above can be interpreted as non-tangential approach in R**!
of (y,t) to the point (z,0) whch is located on the hyperplane £ = 0.

Proof of Lemma 3.9.1. Proof of (ii). Let

u(y) = Px(y) + Rz(y) and Fi(y) = F(y,1).

Then
D°Fy(y) = D% » u](y) = D¢ + u(y).

Therefore
DeFy(z +h) = / D%pi(z + h — y)u(y)dy
= [Drartz+h- Py + [ Dooa +h - n)Ra()dy

= (o« DP:)(z + h) + / D*pi(z + h — y) Rz (y)dy. (3.9.2)
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There is a constant C = C(|Dy|) such that
ID%py(z + h—y)| < Ct™*

for |a| = k. Consequently, for & € B(0,t), it follows that

'/D"w:(r +h - y)R(y)dy| < Ct‘""‘/ |R:(y)|dy
B(z+h,t)

< cr“**/ |R:(y)ldy = 0 as t}0,
B(z,2t)

by (3.9.1). Writing P, in terms of its Taylor series, we have

k a [+
Pz(y)= Z D P,(z)(y—z)

!
[}
ja|=0

and therefore D*P,(y) = D*P,(z) for all y € R™ if |a| = k. Hence,
¢t » D®P,(z + h) = D*P,(z), and reference to (3.9.2) yields

limsups * D%u(z + h) = D®Pr(z), 0<|h| <, (3.9.3)
t10

thus establishing (ii) if |a] = k. However, if 0 < € < k, then © € t!P(z) and
the associated polynomial is

L DoP,(z)(h - 2)°
g g
a|=0

Thus, applying (3.9.3) to this case leads to the proof of (ii).
The proof of (i) is similar and perhaps simpler. The only difference is
that because P; is of degree at most k — 1, we have

D°Fy(z+h)=0+ /D“v.(h — y)R:(y)dy

if |a| = k. The integral is estimated as before and its absolute value is seen
to be bounded for all ¢t > 0, thus establishing (i). a

The next two lemmas, along with the preceding one, will lead to the
main result, Theorem 3.9.4.

3.9.2. Lemma. Let T be a distribution and suppose for all z in an open
set 1 C R" that

li{niélf wexT(y) > —00, |Jxz-y|<Lt,
t€S
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where § C {0,00) is a countable set having 0 as its only limit point. Let C
be a closed set such that C N Q # 0. Then there erist N > 0 and an open
set ) C Q with CNQy # @ such that v * T(y) > ~N > —oo whenever
ly—z|<t,zeCN,teS.

Proof. Let
F.(z)=inf{p * T(y): |z —y| < t,t €S}

Then, F.(z) > —oo for z €  siuce 0 is the only limit point of § and it is
easy to verify that F, is upper semicontinuous. Thus, the sets

cnan{z:F.(z)>-i}, i=12,...,

are closed relative to C N {2 and their union is C N Q. Since CNQ is of the
second category in itself, the Baire Category theorem implies that one of
these sets has a non-empty interior relative to C N 2. O

One of the fundamental results in distribution theory is that a non-
negative distribution is a measure. The following lemma provides a gener-
alization of this fact.

3.9.3. Lemma. Let § > 0, N > 0, and suppose S i3 as in Lemma 3.9.2. If
T is a distribution m an open set Q such that

e *T(z)>—-N>—-00 for z€Q, t€e SN(0,6)
end
limsup ¢ * T(z) > 0 for almost all zo € Q,

tjo
[z—zo|<t

then T is a non-negative measure in §1.

Proof. Let ¥ € & (Q), ¥ > 0, and recall from Section 1.7, that the convo-
lution ¢, » T is a smooth function defined by

oo * T(z) = T(T22)
where @(y) = pe(—y) and 7, ¢(y) = Ge(y — 7). Then,

T(» @) =T+ (¥ +0:)(0)
= (T « ) * ¥(0)

= [T at-viwa

= /T*w(y)w(y)dy-
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Now ¥ * ¢, — ¢ in Z () as t — 0*. Moreover, since 3 is non-negative
and @, «T(x) > —N for x € R and t € §N (0,6), it follows with the help
of Fatou’s lemma, that
T(¥) = Ililr(r)l T(y * @)
tes

> lim inf/ T + oo (y)¥(y)dy
tlg 1]
te

> / lim inf T * gy (y) ¥ (y)dy
2 &

>-N /n Y(y)dy.

Thus, the distribution 7" + N has the property that
(T+N)(¥)20 for D), ¢>0.

That is, T + N is a non-negative measure on 2, call it u. Let u = v + 0
where v is absolutely continuous with respect to Lebesgue measure and o
is singular. Clearly, €2 is the union of a countable number of sets of finite
v measure. Thus, by the Radon-Nikodym theorem, there exists f € L!(Q)
such that

v(E) = / f(z)dz
E
for every measurable set E C 2. Since T + N = p, it follows that
perT(z)+ N = gy + (T + N)(x) = 1 * i(2)

= / ei(z — ) f(y)dy + / or(z — y)da(y), (3.9.4)
[¢] Q

for z € Q1. Because o i8 a singular measure, a result from classical differen-
tiation theory states that

i o1Bao )] _

t—0 |B(zp, )|
for almost all zp € Q, cf. [SA, Lemma 7.1]. Therefore, at all such zo with
|z~ x| < t,

/gpg(x —y)do(y) = -/B(z 5 wi(z — y)do(y)

—y)d
< /;(nm) we(z — y)do(y)

o[(B(zo, 2t)]
|B(zo, t)|
—0 as t —» 0% with |[r—=zp| < t.

< Clivlloo



3.9. The Implications of Pointwise Differentiability 151

To treat the other term in (3.9.4), recall that f has a Lebesgue point at
almost all 4 € 2. That is,

f VW - Sy =0 as et
B(zo.r)
Therefore,

[ tweda-va- 1) = [ 1) - faoleda - vy
B(x,t) B(z.t)

< Clollo f

Consequently,

) [£(y) — f(zo)ldy =0 as t =0, |z —zo| < L.

(z0.2

N < limsup ¢ »T(z) + N = f(x0)
II*I:SIS'

for almost all zp € Q. This implies that
v(E) > N|E|

for all measurable E C Q. Since pu(E) > v(E) it follows that the measure
p — N =T is non-negative. a

3.9.4. Theorem. Let T be a distribution in an open set 2 C R™ and let
f € L) (). Assume

loc

“T;Souw' «T(y) > f(z), |lz-yl<t,

for almost all x € 2, and

]ir?lélnf we*T(y) > —o0, |z-—y|<t,
tes

for all z € Q. Then T — f 13 a non-negative measure in (1.

Proof. We first assume that f = 0. Lemma 3.9.2 implies that every open
subset of (I contains an open subset ' such that for some N > 0, pxT(z) >
—Nforz e, t€S. Lemma 3.9.3 implies that T is a measure in .

Let 2, be the union of all open sets ' C £ such that T is a non-negative
measure on . From Remark 1.7.2 we know that 7" is a measure in £2;.
We wish to show that £2; = Q2. Suppose not. Applying Lemma 3.9.2 with
C = R™ — 4, there is an open set §) C Q such that ¢, x T(z) > —N
foryeCnNQ, |z —y| <t andt €S Let Uy = 2, UQ' and note that
Q-Q =CNQ. Let

Qa=Qzﬂ{z:d(.’L‘,R"'—nz)>€}
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for some ¢ > 0. Take ¢ sufficiently small so that Q3 N (R" — ;) # @.
Consider ¢, + T(z) for z € 23 and t < . Now T is a non-negative measure
in ). Therefore, if d(z, B® — Q,;) > ¢, ¢ « T(z) 2 0. On the other hand,
if d(z,R® — Q,) < t, there exists y € R® — ; such that |z~ y| < t.
Since B(xz,t) C 3, it follows that y € 2, — Q) = C N Q. Consequently,
pe*T(z) > —N. Hence, pxT(z) is bounded below for z € 23, € SN(0, €),
and thus T is a measure in 23 by Letuma 3.9.3. But Q3N (R® — ) # 0
thus contradicting the definition of ;.
For the case f # 0, for each N > 0 define

N, f(@m2N
In@@)={ flz), —-N<f(@)<N
=N, f(#)<-N

and let R be the distribution defined by R = T — fn. Clearly R satisfies
the same conditions as did T when f was assumed to be identically zero.
Therefore, R is a non-negative measure in 2. Thus, for ¥ € Cg°(Q), ¢ > 0,

R(v) = T(¥) - / fnvdz > 0.

Letting N — 00, we have that

) [ fodz 20
That is, T — f is a non-negative measure in §). o

Now that Theorem 3.9.4 is established, we are in a position to consider
the implications of a function u with the property that u € T*?(z) for
every ¢ € (2, where {2 is an open subset of R". From Theorem 3.8.1 we
have that u € t¥P(z) for almost all z € ). Moreover, in view of Lemma
3.9.1 (ii), it follows that whenever u € t5-P(r),

limsup ¢ » D%u(y) = D?P,(z), |z -yl <,
t]o

for 0 < |al < k. For convenience of notation, let u,(z) = D*P,(z), and
assume u, € LP(f2). Then Theoremn 3.9.4 imnplies that the distribution
D®u — u, is a non-negative measure. Similar reasoning applied to the func-
tion —u implies that D*(—u) — (~u,) is a non-negative measure or equiv-
alently, that D%u — u, i8 a non-positive measure. Thus, we conclude that
D®u = u, almost everywhere in Q2. That is, the distributional derivatives
of u are functions in L*({2). In summary, we have the following result.

3.9.5. Theorem. Let 1 < p < co and let k be a non-negative integer. If
u € T*P(z) for every T € Q) and the LP-derivatives, uq, belong to LP(Q),
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0 < |a| < k, then u € Wkp(Q),

Clearly, the hypothesis that the LP-derivatives belong to L?() is neces-
sary. On the other hand, we will be able to strengthen the result slightly
by not requiring that u € T%?(z) for all z € Q. The following allows an
exceptional set.

3.9.6. Corollary. Let K C R™ be compact and let 2 = R™ — K. Suppose
H" [n;(K)} = 0 where the m; : R® — R*™!, i = 1,2,...,n, are n inde-
pendent orthogonal projections. Assume u € T*?(z) for all x € Q and that
g € LP(Q), 0 < |a| < k. Then u € WEP(R").

Proof. Assume initially that the projections m; are given by

71’.'(1‘) = (I],...,ig,...,l‘")

where (x),...,4,,...,Za) denotes the (n — 1)-tuple with the z;-component
dcleted. Theorem 3.9.5 implies that u € W*?(Q). In view of the assumption
on K, reference to Theorem 2.1.4 shows that u € W'?(R") since u has a
representative that is absolutely continuous on almost all lines parallel to
the coordinate axes. Now consider Dy, |a| = 1. Since D%u € W*~1.2(Q)
a similar argument shows that D”u € W1?(R") and therefore that u €
W2P?(R"™). Proceeding inductively, we have that u € WFP(R").

Recall fromm Theorem 2.2.2 that u € W¥*P(R") remains in the space
W*?(R"} when subjected to a linear, non-singular change of coordinates.
Thus, the initial restriction on the projections 7; is not necessary and the
proof is complete. D

In the special case of k = 1, it is possible to obtain a similar result
that does not require the exceptional set K to be compact. We state the
following [BAZ, Theorem 4.5), without proof.

3.9.7. Theorem. Let K C R" be a Borel set and suppose H*'[m;(K)) = 0
where the my : R® — R~ i = 1,2,...,n, are n independent orthogonal
projections. Let @ = R™ — K and assume u € LY _(Q2) has the property that
its partial derivatives exsst at each point of Q and that they are in L} ().

Then u € W P(R™).

3.10 A Lusin-Type Approximation for Sobolev
Functions
Lusin's Theorem states that a measurable function on a compact inter-

val agrees with a continuous function except perhaps for a closed set of
arbitrarily small measure. By analogy, it seems plausible that a Sobolev
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function u € W*»(£2) should agree with a function of class C*(§2) except
for a set of small measure. Moreover, if the requirement concerning the
degree of smoothness is lesscned, perhaps it could be expected that there
is a larger set on which there is agreement. That is, one could hope that u
agrees with a function of class C¢(9), 0 < € < k, except for a set of small
By._¢ p-capacity. Finally, because Sobolev functions can be approximated
in norm by functions of class C¥(f), it is also plausible that the Lusin-type
approximant could be chosen arbitrarily close to u in norm. The purpose
of this and the next section is to show that all of this is possible.

In this section, we begin by showing that if u € W*?(R"), then u agrees
with a function, v, of class C? on the complement of an open set of ar-
bitrarily small Bj_¢p-capacity. In the next section, it will also be shown
that |lu — vlls, can be made small. The outline of the proof of the exis-
tence of v is as follows. If 4 € W*P(R") and 0 < £ < k, then Theorem
3.4.2 implies that u € t“?(x) for all z except for a set of Bi—g ,-capacity 0.
This means that the remainder terms tends to 0 (with appropriate speed)
at Bi_¢p-q.e. £ € R". We have already established that if a function u
has an LP-derivative of order £ at all points of a closed set A (that is, if
u € t&?(z) for each £ € A) and if the remainder term tends to 0 in L? uni-
formly on A, then there exists a function v € C(R™) which agrees with u
on A (Theorem 3.6.3). Thus, to establish our result, we need to strengthen
Theorem 3.4.2 by showing that the remainder tends uniformly to 0 on the
complement of sets of arbitrarily small capacity. This will be accomplished
in Theorem 3.10.4 below.

In the following, we will adopt the notation

i/p
Mypu(z) = sup (f Iu(u)l"dy)
0<r<R B(z,r)

whenever u € LP(R®), 1 < p < 00, and 0 < R < oo.

3.10.1. Theorem. If 1 < p < 0o and k i3 & non-negative inleger such that
kp < n, then there is a constant C = C(k,p,n) such that

C
Bipl{z: Mp ru(z) > t}] < t_p"“"i.p (3.10.1)
whenever u € WFP(R™) and R < 1.
Proof. We use Theorem 2.6.1 to represent u as u = gx+f where f € LP(R")

and ||u|lk,p ~ |[f]lp- Thus, it is sufficient to establish (3.10.1) with |Jullp
replaced by || f|lp. Since lu| < ge * |f], we may assume f > 0. Let

E; = {z : My pu(z) > t}

and choose z € E,. For notational convenience, we will assume that £ =0
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and denote B(0,r) = B(r). Thus, there exists 0 < r < R < 1 such that

flutrdy > e
B(r)

ﬁ(r) (-/R o(y = "’)f(w)dw)p dy > tP.

Utilizing the simple inequality (a + b)? < 2P~1(aP + b*) whenever a,b > 0,
it therefore follows that either

P
f (/ gk (y — w)f(w)dw) dy > 2P (3.10.2)
B(r) \Jjwiger

P
f (/ oy — w)f(w)dw) dy > 2'~P¢P, (3.10.3)
B(r) \Jj>2r

If y € B(r), then from Lemma 2.8.3(i) and the fact that gx < Clx, (2.6.3),
we obtain

or

or

f(w)
gy —w)f(w)dw <C T dw
-/fw|<2r Jy—w)<3r ly — w| k
< Cr¥Mf(y),
where C = C(k,n). Thus, in case (3.10.2) holds, we have
tP < Crkp M f(y)Pdy (3.10.4)
B(r)
where C = C(k,p,n).
We will now establish the estimate
/ ge(y —w)f(w)dw < C inf gx{y — w)f(w)dw (3.10.5)
Jw|>2r v€B(r) lwi>2r

for all y € B(r). Recall that r < 1. Now if y and w are such that |y| < 7 <
2r < |w} £ 2, we have

lw]

3
§le > |wl+lyl 2w -yl > |wl - |y 2|wl—7-

Consequently, if g, and y, are any two points of B(r), refer to (2.6.3) and
the inequality preceding it to conclude that for some constant C = C(k, n)

C C
- <
W=V S Ty E S
C

_ . < - . 10.
gt = Cox(w — 32) (3.10.6)
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If jw| > 2 and y € B(r), then %|w1 Slwl+1 > jw-yl > jw -1y >
lw| — 1 > Jw|/2. Therefore, in this case we also have

gr{w — 1) < Cgr(w — y2). (3.10.7)

Our desired estimate (3.10.5) follows from (3.10.6) and (3.10.7}. Thus, in
case (3.10.3) holds, there is a constant C = C(k,p,n) such that

P
tP<C inf - d
<C if (A;pw a(w ~ y)f(w) w)
< inf L
< Cyelg(r)(gk « f(y))

To summarize the results of our efforts thus far, for each z € E; there
exists 0 < r < 1 such that either

tP < Crkp ][ M f(y)Pdy (3.10.8)
B(I.T)
or
t<C inf . 3.10.
<C  inf ok f(y) (3.10.9)

Let G, be the family of all closed balls for which (3.10.8) holds. By Theorem
1.3.1, there exists a disjoint subfamily F such that

Bio({UB: B€ G} < By {{UB:Be F}
<Y Bey(B)
BeF
<C Y (5r)"* (by Theorem 2.6.13)
B(z,r)eF

C
Sy 2 [ MIwprdy
BeF

< :—i||f||§ (by Theorem 2.8.2). (3.10.10)

Let G, be the family of closed balls for which (3.10.9) holds, then the def-
inition of Bessel capacity implies that By ,[{UB : B € Ga}] < (C/tP)|(f]]3.
Thus

BiplE] € Bep[{UB: B €G]+ B ,[{UB: B€ G} < -C-llfll".

S
which establishes our result. o

We now have the necessary information to prove that integral averages
of Sobolev functions can be made uniformly small on the complement of
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sets of small capacity. This result provides an alternate proof of Theorem
3.3.3, as promised in the introduction to Section 1 of this chapter.

3.10.2, Theorem. Let 1 < p < 0o and k be a non-negative integer such
that kp < n. If u € WFP(R™), then for every € > 0 there erists an open
set U C R™ with By ,(U) < € such that

£ lute) - @y 0
B(z,r)
uniformly on R" —U asr | 0.

Proof. With the result of Theorem 3.3.3 in mind, we define
Acalz) = £ fuly) - u(a)Pay
B(z,r)
for £ € R™ and r > 0. Select  such that 0 < € < 1. Since u € W*P(R™),
there exists g € C5(R") such that
llu - gllf , <&*'/2.

Set h = u —g. Then

A u(z) < 277 A g(7) + AR(z)),

Arh(z) < 277! (ﬁ( )lh(y)l"dy+ lh(z)l") ,

and therefore,

Aru(z) S C [Arg(z) +f |h(y)|Pdy + Ih(x)l”] ,

B(z.r)

where C = C(p). Consequently, for each z € R",
sup A,u(z) < C[ sup A,9(z) + M, gr|h|(z) + [h(z)|"] .
O<r<R 0<r<R

Since g has compact support, it is uniformly continuous on R" and therefore
there exists 0 < R < 1 such that

sup CA,g(zr)<?
0<r<h

whenever € R". Therefore,

{x : sup A,u(z) > 3?} C {z : CMy g|h|(z) > E} U {z: C|h(z)|? > &}
0<r<R



158 3. Pointwise Behavior of Sobolev Functions

C {z:CM,alhl(z) >} U{z: (CE)P|h@)]) > 1}.

Since h € W5?(R"), by Theorem 2.6.1 we can write & = gi * f, where
Il fllp ~ lRllk.p- Now

{z: (CE"HYYPh(z)| > 1} C {z: (CE~")/Pg, «|f|(z) > 1}

and therefore, by the preceding theorem and the definition of capacity, we
obtain a constant C = C(k, p, n) such that

Bip[{z: sup A,u(z) > 38} < CEPIRIE, + 7 |AIF ]
0<r<R
P A
<C2 (__)
2
< C&.

For each positive integer i and ¢ as in the statement of the theorem, let
£, = C~'£27* to obtain 0 < R; < 1 such that

Bk p [{x : sup A,u(z) > 3?.-}] <e27%,

0<r<R,
Let
00
U= U {z : sup Acu(z)> 3?.-}
i=1 O0<r<R,
to establish the conclusion of the theorem. (]

3.10.3. Remark. If we are willing to accept a slightly weaker conclusion in
Theorem 3.10.2, the proof becomes less complicated. That is, if we require
only that

£ lutw) - ua)idy — o0
B(z,r)
uniformly on R® — U as r | 0, rather than

£ lut) - u@Pdy o

B(z,r)
then an inspection of the proof reveals that it is only necessary to show

C il
Biollz : Mu(z) > t}] < Slull,.

To prove this, let u = g, * f, where || f]|, ~ [[u|lx.p and define

L oif 2| <7
L, (z) = {6 otherwise.
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Then
f ity =", « i
B(z,r)

STy (g |f)(2)
< gk * M| fi(z),
which implies Mu < gx » M| f|. From the definition of capacity,
Bip[{z : Mu(z) 2 t}] < Bip[{x : gx * M|f|(z) 2 t}]
SEPIMILSINE
< Ct™®||f|I5, by Theorem 2.8.2,
< CtP|ullf -
As an immediate consequence of Theorem 3.10.2 and the proof of The-
orem 3.4.2, we obtain the following theoremn which states that Sobolev

functions are uniformnly differentiable on the complement of sets of small
capacity.

3.10.4. Theorem. Let £,k be non-negative integers such that £ < k and
(k—8&p < n. Let u € W*P(R™). Then, for each £ > 0, there exists an open
set U wnth By_4,(U) < € such that

1/p

rt [f lu(y) — PO)IPdy| -0
B(z.r)

uniformly on R" —U as r | 0.

Finally, as a direct consequence of Theorems 3.10.4 and 3.6.3, we have
the following.

3.10.5. Theorem. Let £,k be non-negative integers such that £ < k and
(k—€p < n. Let u € WHP(R™) and ¢ > 0. Then there ezists an open set
U C R" and a C* function v on R", such that

Bi_ep(U) <e

and

D%v(z) = D%u(z)
foralze R* - U and 0< |a] < ¢.

3.11 The Main Approximation

We conclude the approximation procedure by proving that the smooth
function v obtained in the previous theorem can be modified so as to be

close to u in norm.
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In addition to some preliminary lemmas, we will need the following ver-
gion of the Poincaré inequality which will be proved in Theorem 4.5.1.

3.11.1. Theorem. Let 0 € (0,1), £ a positive integer, and 1 < p < oc0.
Then there exists a constant C = C(o, £, p, n) such that for every non-empty
bounded conver subset Q2 of R™ with diameter p and every u € wbr ()
for which

[N {z: u(z) =0} > a9,

we have the inequality

Z ./n |D*u(z)|Pdx.

[ @pds < o
a2 laj=¢

3.11.2. Lemma. Let ¢ be a positive integer and let u be a function WSP(R™)
which vanishes outside a bounded open set U. Let 6,0 € (0,1) and let

E=6Un{z:hﬁ|KhJ”ﬁRn_U”20} (3.11.1)

o<t<s t

where K(z,t) denotes the closed cube with center = and side-length t. Let
m be a positive integer such that m < £ and let ¢ > 0. Then there exssts a
function v € W™ P(R™) and an open set V such that

(1) llu~vlmp <&
(i) ECV and v(z) =0 when z € VU (R" - U).
Proof. For A € (0,1], let K denote the set of all closed cubes of the form
((£1 = 1)A61A] x [(83 = 1A i2A] X -+« x [(3p — 1)A, 30 2]
where i},12,...,1in are arbitrary integers. Let A < 36 and let
K, K,,... K,
be those cubes of K, that intersect E. Let a; be the center of K; and let
P; = K(ai,4A).

Let { be a C* function on R™, such that 0 < ( £ 1, ((z) = 0, when
z € K(0,1) and {(z) = 1 when z ¢ K(0,3/2). Define

ua(z) = (=) [] ¢ (’2‘;“'
=1

for £ € R". Clearly ux(z) = 0 when d(z, E) < 1A, so that, for any X, we
can define v by v = v, and find an open set V satisfying (ii).

) (3.11.2)
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We keep ¢ fixed for the moment and estimate

”U - U,\”l,p;l’.- (3113)

We observe that there exists a constant 7, depending only on n and such
that at inost 7 of the cubes P; intersect P; (including P;). Denote these by

Fj\, Py ..» P

where s < 7. Then, for z € P,

vy (z) = u(z)w(x), (3.11.4)
where .
w(z) = [[ ¢z - a5,)/2A]. (3.11.5)
k=1

Now, for z € P; and any multi-index o with 0 < |a| < ¢, we have
[Dew(z)| < A1 A~

where A, depends only on £ and n. Hence for almost all z € P; and any
multi-index v with 0 < }y| < ¢, we have

)yl

IDVus(z)] < A2 )2 3 | DPu(z), (3.11.6)

r=0  |pl=r

where A, depends only on £ and n.

Let y be a point where K; intersects E. Clearly, there is a subcube Q; of
P; with center y and edge length 3A. By (3.11.1), u and hence its derivatives
are zero on a subset Z of Q; with

1Z] > 0(3A)". . (3.11.7)

By applying the Poincaré inequality to the interior of the convex set P, we
obtain, when {8} < ¢,

/ |DPu(z)|Pdz < AP0 N~ | | Dfu(z)|Pdz (3.11.8)
P, —,/P
' =P

where A3 = A3(¢,0,p,n). But, with a suitable constant Aj, (3.11.8) will
still hold when || = £. By (3.11.6) and (3.11.8) (since A < 1)

/P‘ |DVuy(z)|Pdz < Ay z ./p, | Dfu(z)|Pdz (3.11.9)

I€)=¢
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for 0 < |v| € ¢, where Ay = A4(¢, p,0,n). Let

o Un
=1

Then

/ DAz} dz < Ag Y Z / |DEu(z)Pds

[§1=3=1

for 0 < |7| < £. But each point of X, belongs to at most 7 of the cubes P,
hence

/ |DYuy(z |"d:c<rA4Z/ | DS u(z)|Pdz, (3.11.10)
lei=t

for 0 < |y} < ¢. Now

e - vall, <22 3 UXA |D7uy(z)Pdz + /x [D"u(.t)l*’dx] :

0<lvi<e

so that by (3.11.10)

lu—eal}, <45 D / | D u(z)Pdz (3.11.11)
X\nuU

0< || <t
where As = A;(¢,p,0,n). But
X,nU cUn{z:d(z,dU) < 2y/nA}.
Hence |{(Xy NU)| — 0 as A | 0. Therefore by (3.11.11)

Nu —valle, — 0

as A — 07.
The required function v is now obtained by putting v = vy, with suffi-
ciently small A. O

3.11.3. Lemma. Let 0 < A < n. Then there extsts a constant C = C(A, n)
such that

f [z — y*"dz < Cly — 2™, (3.11.12)
B(z,6)
forally,2 € R" and all § > 0.

Proof. We first show that there exists a constant C, such that (3.11.12)
holds when y = 0 and z is arbitrary.
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When |z] > 36, we have
1
2] < fe) +)z =] < Jal +5 < Jal + 3]z,

30 that |2| < 3|z|, |z|*~" < A|z|*~, and (3.11.12) holds.
When |2| < 38,

5-"/ |z]*~"dz < 5*"/ |z]*-"dz = C6* .
B(z2.6) B(0.45)

Hence, it is clear that (3.11.12) holds with y = 0.
Since we have shown that

5-"/ lz*"dz < C|zP,
B(z,6)

for all z € R™, the general result follows by a change of variables; that is,
replace z by z — y. a

Throughout the remainder of this section, it will be more convenient
to employ the Riesz capacity, R ,, rather than the Bessel capacity, By p.
This will have no significant effect on the main result, Theorem 3.11.6. See
Remark 3.11.7.

3.11.4. Lemma. Let k be a non-negative real number such that kp < n.
Let U be a bounded non-empty open subset of R™ and F a subset of U
with the property that for each x € F, there is a t € (0,1) for which

\U 0 B(z, t)] :
———= 20 3.11.13
Bz, 0] > GAL1
where o € (0,1). Then there etists ¢ constant C = C(n,p, k) such that
Ry ,(UUF) < Co™ PRy p(U). (3.11.14)

Proof. Let ¢, U, and F be as described above. The cases k =0 and k£ > 0
are treated separately.

(i) We consider first the case where ¥ > 0. Let ) be a non-negative
function in ZP(R™) with the property that

1 / ke

— z—y* "P(y)dy > 1 (3.11.15)
) Jpn! :

for all z € U. Let C; be the constant of Lemnma 3.11.3. It can be assumed

that C, > 1. Consider a point b € F and let ¢ be such that (3.11.13) holds

for z = b, By Lemma 3.11.3,

Cily — b > f |z — yl*~"dz
B(b.0)
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80 that

c — b* "™ y(y)d [/ —yl* d]d
1/m|y I w(y)yZ/B(b,l) nlz yI" "¢(y)dy| dz

and by (3.11.15),
> (k)" |U N B(b, ).

Hence by (3.11.13),
G2
Y(k) Jpn
Put n = C,0~'y. Then

ly — b*"¢(y)dy > 0.

1 -n
m/m ly — z|* "n(y)dy > 1

for all z € F, and therefore,

b4
Rip(F) < Inlle = (9) .

o

Thus Co\?
Rup(F) < (2 Reptt)

The required inequality now follows.
(ii) Now let k = 0, so that Ri, becomes Lebesgue measure. Let B be
the collection of all closed balls B with center in F and radius between 0
and 1 such that
{U N B|
|B]

Hence, by Theorem 1.3.1, there exists sequence {B,}, B, € B, such that
B, NB, =0 whenr # s and

>o0. (3.11.16)

Thus - -
IFI <Y 1B, =5")_|B.|
r=1 r=1

and by (3.11.16)

o0
< 5" 'Y [wnB| <5t

r=1

Since o < 1, the required inequality follows. a
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3.11.5. Lemma. Let p > 1, k a non-negative real number such that kp < n
and £ a positive integer. There ezists a constant C = C(n,p, k,£) such that
for each bounded non-emply open subset U of R™, each u € WEP(R™)
which vanishes outside U and every € > 0 there exists ¢ C™ function v on
R™ with the properties

() s —vllep <k,
(ii) Rgp(sptv) < CRep(U) and
(iii) sptv CV = R*"N{z : d(z,U) < &}.

Proof. Let U, u, and ¢ be as described above. Since U # @, it follows that
Ri p(U) > 0. Let

E=3Uﬂ{z: inf @z_,t)_—;_[]_)_]zl}

1117
0<t<1/2 tn 2 (3 )

Then E is closed. By Lemma 3.11.2 there exists a function vp € W4P(R")
and an open set Vj such that

1
Iz — volle, < EE' (3.11.18)

E C Vp and vy(z) = 0 when z € Vo U(R"™ — U). Set
F=90U-E.
Then, for each r € F there exists t € (0,1/2] such that

U nB(zb)|

— 3.11.19
Bz ) (3.11.19)

where ¢ = 1 — 1/(2a(n)). Let C, be the constant appearing in Lemma
3.11.4. Then 1
Rep(UUF) £ ECR;:_,,(U), (3.11.20)

where C = 2C,07P. Let
B =R"N{z: v(z) # 0}.

Then B € U UF and hence Ry »(B) < 3CRy,(U), s0 that there exists an
open set W with B ¢ W and

Rip(W) < CRk‘p(U).

By applying a suitable mollifier to vy we can obtain a C* function v with
sptv Cc VNW and

1
vo — vllep < e (3.11.21)
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It follows from (3.11.18) and (3.11.21) that v has the required proper-
ties. o

We are now in a position to prove the main theorem.

3.11.6. Theorem. Let £, m be positive mtegers withm < ¢, (£ —-m)p<n
and let 2 be a non-empty open subset of R*. Then, for u € WH?(Q) and
each € > 0, there erists a C™ function v on Q such that if

F=90n {z cu(z) # U(x)}'

then
Rl—m,p(F) <e and "u - v“m,p <E.

Proof. It can be assumed that the set A = QN {z : u(z) # 0} is not empty.
Initially, it will be assumed that 2 = R™ and A bounded. We will show
that there exists a C™ function v on R" satisfying the conclusion of the
theorem and that spt v is contained in the set V = A* N {z : d(x, A) < €}.

Let C be the constant of Lemma 3.11.5. Let z be defined by its values
at Lebesgue points everywhere on §2 except for a set E with By p(E) =
Ry p(E) = 0. By Theorem 3.10.5 there exists an open set U of R" and a
C™ function h on R™, such that U D E,

3
1+C

Re—m p(U) < (3.11.22)

and
h(z) = u(z)

for all r € R® — U. We may assume that spth ¢ V and U C V. By
substituting £ —m for k and u — h for u in Lemma 3.11.5, we obtain a C*°
function ¢ on R™ such that

lu—h = @lim,p <e, (3.11.23)
Ry—mp(spt) £ CRy-m p(U), (3.11.24)

and
spt C V. (3.11.25)

Put v = h + . Then the second part of the theorem follows from {3.11.23).
Clearly,

FC R"N[{z: h(z) # u(z)} Uspt ] C U Uspty, (3.11.26)
so that by (3.11.24)
Rp—mp(F) S (1+C)Re-m p(U).
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Thus, the first part of the conclusion follows from (3.11.22). Since spt h and
spt © are both contained in V, it follows that sptv C V.

We now consider the general case when Q is an arbitrary open subset of
R". Let {C;}32, be an infinite sequence of non-empty compact sets, such
that

C; C IntCiyy (3.11.27)

for ¢ a non-negative integer and
lim C; = Q. (3.11.28)
i—00

Put C_, = 0. For each i > 0, let p; be a C* function on R™ such that
0<p; <1,

C; C int{z : gi(z) = 1}, (3.11.29)

and
sptw; C Int C, 4. (3.11.30)

Put
Yo=wo and ;= — i (3.11.31)

when 1 > 1. Then each ¥; is C*° on R™ with compact support and
spt ¥, C (Int C"+|) - Ci-y- (31132)
Hence, for each z € , ¥;(z) # 0 for at most two values of i. Therefore
Y wz) =1 (3.11.33)
=0

for all z € Q. For each ¢ =0,1,2,... define

wia) = [N e e (3.11.30)

By the conclusion of our theorem proved under the assumption that 2 =
R", there exists for each i > 0 a C™ function v; on R® with compact
support such that

llus — villmp < 5&{» (3.11.35)
and
Ri-mp(Fi) < oy 2,“ (3.11.36)
where
Fi= R"N (2 u,(z) # w(@)}.
Moreover,

sptv; C (Int Ciy1) — Cia- (3.11.37)



168 3. Pointwise Behavior of Sobolev Functions

For each = € 2, there are at most two values of i for which v;(z) # 0.
Hence we can define

v(z) = Z v;i(x)
=0

for z € Q. It is easily seen that F' C U2, F;, hence

Rt_m'p(F) < e
Also o
lu = vfjm,p < Z i = villm p < €. o
i=0

3.11.7. Remark. We have seen from earlier work in Section 2.6, that
Rip < OBy p and that Ry, and Bg , have the same null sets. However, it
also can be shown that By, < C[Rkp+(Rk )" *P)} for kp < n, cf. [AS].
Therefore, the Riesz capacity in the previous theorem can be replaced by
Bessel capacity.

Exercises
3.1. Prove that the statement

lim u(y)dy = u(x)
r=0JB(z,r)

for By ,-q.e. € R" and any u € W!P(R") implies the apparently
stronger statement

lim lu(y) - u(z)ldy = 0
=0 JB(z,r)

for By ,-q.e. £ € R™. See the beginning of Section 3.3.

3.2. It was proved in Theorem 2.1.4 that a function u € W'?(R") has
a representative that is absolutely continuous on almost all line seg-
ments parallel to the coordinate axes. If a restriction is placed on p,
more information can be obtained. For example, if it is assumed that
P < n -1, then u is continuous on almost all hyperplanes parallel
to the coordinate planes. To prove this, refer to Theorem 3.10.2 to
conclude that there is a sequence of integral averages

Ar(z) = ﬁ( ,)U(y)dy
z, ¢

which, for each £ > 0, converges uniformly to u on the complement
of an open set U, whose B, g-capacity is less than €. Hence £ =
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3.3.

3.4

3.5.

3.6.

3.7.

3.8.

Ne>oUe is a set of B ,-capacity 0. It follows from Theorem 2.16.6
(or Exercise 2.16) that the projection of E onto a coordinate axis
has linear measure 0. Note that « is continuous on 7~1(¢), t ¢ n(E)
where m denotes the projection. Corresponding results for p > n — &,
k an integer, can be easily stated and proved.

At the beginning of Section 3.9, an example is given which shows that
u need not be bounded when v € W'*{B(0,r))], r < 1. This example
can be easily modified to make the pathology even more striking. Let
u(z) = log log(1/|z|) for small |z| and otherwise defined so that u is
positive, smooth and has compact support. Now let

v(z) =Y 27%u(z - re)
k=1

where {r,} is dense in R". Then v € W1*(R") and is unbounded in
a neighborhood of each point.

Use (2.4.18) to show that if u € W ?(R"), p > n, then u is classically

loc
differentiable almost everywhere.

Verify that ||u||pe.s(z), which is discussed in Definition 3.5.4, is in fact
a norm.

If u € W1P(R"), the classical Lebesgue point theorem states that

lim |u(z) — u(zo)ldz = 0 (%)

7=0/B(z0,r)

for a.e. zp. Of course, u € L!(R™) is sufficient to establish this result.
Since u € W1-2(R™), this result can be improved to the extent that
(*) holds for B, ,-q.e. zg € R® (Theorem 3.3.3). Give an example
that shows this result is optimal. That is, show that in general it is
necessary to omit a B) ,-null set for the validity of (*).

Prove that (3.3.22) can be improved by replacing p by p* = np/(n —
kp).

A measurable function u i3 said to have a Lebesgue point at zy if

lim Ju(y) — (zo)ldy = 0.
70 JB(zo,r)

A closely related concept is that of approrimate continusty. A mea-
surable function u is said to be approximately continuous at r, if
there exists a measurable set E with density 1 at xg such that u is
continuous at zp relative to E. Show that if u has a Lebesgue point
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3.9.

3.10.
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at zo, then u is approximately continuous at zy. See Reniark 4.4.5.
Show that the converse is true if u is bounded and that it is false
without this assumption.

Another definition of approximate continuity is the following. u is
approximately continuous at zg if for every € > 0, the set

Ae = {7 : Ju(z) — u(zo)| 2 €}
has density 0 at xo. A, is said to have density 0 at zp if

lim |As n B(IO» Y‘)l

=0.
r—=0  |B(zp,7)|

Prove that the two definitions of approximate continuity are equiva-
lent.

The definition of an approzimate total differential is analogous to
that of approximate continuity. If « is a real valued function defined
on a subset of R®, we say that a linear function L : R® — R! is an
approximate differential of u at zq if for every € > 0 the set

A, = {:c : |u(z) — u(zo) — L(z = o) S e}

|T — zol -

has density 0 at xy. Prove the analog of Exercise 3.8; show that if u
is an element of t'}(zy), then u has an approximate total differential
at zp.

The definition of an approximate total differential given in Exercise
3.9 implies that the difference quotient

|2(z) — u(zo) — L(z — z0)

|z — zo|

approaches 0 as ¢ — z¢ through a set £ whose density at zq is
1. In some applications, it is necessary to have more information
concerning the set E. For example, if u € W'?(R"), p > n - 1, then
it can be shown that u has a regular approzimate total differential at
almost all points zq. The definition of this is the same as that for an
approximate total differential, except that the set E is required to be
the union of boundaries of concentric cubes centered at xp. To prove
this, consider

u(zp +t2) —u(zo)

, L(z),

Ug, (8, 2) =

and define
Tzo(t) = sup{|u(2)] : z € 8C}
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where C is a cube centered at zo. Since z is fixed throughout the
argument, let u,(z) = u,, (¢, 2).

STEP 1. For each z¢ and each cube C with zg as center, observe that
u; € WHP(C) for all sufficiently small ¢ > 0. With

g (t) = /C (Iaf? + | Due[P)dz

prove that a,,(¢) — 0 as ¢t — 0 for almost all z,.

STEP 2. Show that u has a regular approximate differential at all z,
that satisfy the conclusion of Step 1 and for which Du(z,) exists. For
this purpose, let L(z) = Du(zp) - z. Since u, € W1?(C), it follows
that u, € W'?(K,) for almost all r > 0 where K, is the boundary of
a cube of side length 2r. Moreover, from Exercise 3.2, we know that
u, is continuous on all such K,. Let

pe(r) = /K (|ue|? + | Du|PYdH™ .

Let E; = [1/2,1) N {r : o(r) < a,(t)!/?} and conclude that

[([1/2,1) = Ef)| < ag, ()'/2.

STEP 3. Use the Sobolev inequality to prove that for z € K, r € E,,
and = (n—-1)/p

(ue(2)] < Mr=? (/K |u;|”dH"*1)llp

1/p
+ Mrt=f (/ |Du,|"dH"")
Kr

< Mr=Poy(r) /P 4+ Mr' =Py, (r)/P
< [M2° + Mla.,(t)Y/?,

where M = M(p,n).
STEP 4. Thus, for z € K, and r € E|,

Yeo(t - 1) = r "V sup{Jue(2)| : z € K.}
< 2[M2P 4+ 1] - ag, ()" /?P.

STEP 5. For each positive integer i, let t; = 27* and let E,, be the
associated set as in Step 2. Set A = U2, E, and note that 0 is a

point of right density for A (Step 1) and that v.,(t) — 0 as t — 0,
te A
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Prove that % defined in (3.6.2) belongs to C°(U — A).

3.12. Give an example which shows that the uniformity condition in the

3.13.

second part of the statement in Theorem 3.5.7 is necessary.

In this and the next exercise, it will be shown that a function with
minimal differentiability hypotheses agrees with a C! function on a
set of large measure, thus establishing an extension of Theorem 3.11.6.
For simplicity, we only consider functions of two variables and begin
by outlining a proof of the following classical fact: If u is a measur-
able function whose partial derivatives exist almost everywhere on a
measurable set E, then u has an approrymate total differential aimost
everywhere on E. See Exercise 3.9 for the definition of approximate
total differential.

STEP 1. By Lusin’s theorem, we may assume that E is closed and
that u is its partial derivatives are continuous on E.

STEP 2. For each (z,y) € E consider the differences
Az, yi b k) = |u(z + b,y + k) — u(z,y) — hD1u(z,y) — kDzu(z,y)|

A](zl ¥ h) = Iu(z + h’a y) - u(x) y) - thu(z, y)l
Az(z,y; k) = |u(z,y + k) — u(z,y) — kDyu(z,y)|

where Dy = 3/0r and D, = 3/3y. Choose positive numbers ¢, r.
Using the information in Step 1, prove that there exists ¢ > 0 such
that the set 4 C E consisting of all points (z,y) with the property
that

Hz +h:Ai(z,y;h) <7h, (z+ h,y) EE,

a<z<b |b-a| <o, |h|<|b-al}| = (1 -¢€)b-al

satisfies |E — A| < e. Perhaps the following informal description of A
will be helpful. For fixed (z,y), let us agree to call a point (x + h, y)
“good” if A;(z,y;h) < vh and (z + h,y) € E. The set A consists
of those points (z,y) with the property that if I is any interval
paralle] to the z-axis containing z whose length is less than o, then
the relative measure of the set of good points in I; is large.

STEP 3. Now repeat the analysis of Step 2 with E replaced with A to
obtain a positive number 0; < 0 and aclosedset BC 4, [A-B| <¢
which consists of all points (z,y) with the property that

{y + k:Qzx,y; k) <7k, (z,y+ k) €A,

a<y<b |b-al<ay, [kl <|p-al}l2(1-¢€)fb-al
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3.14.

STEP 4. Let 02 < 7, be such that
|Dyu(x + ho,y + k2) — Dru(z + hy,y + k)l <7

for any 2 points (z+hg, y+k3), (z+hy, y+ky) in E with |k —hy| < a2,
|k2 ~ k1| < 0.

STEP 5. Choose (zq,yp) € B and let R = [a1,b1] x [a2, 2] be any
rectangle containing (zp, yp) whose diameter is less than g; < 0, < 0.
Let

E; = {(yo + k) : Az(zo, yo: k) < 7]K|,
(zo,y0 + k) € A, a2 < yo+k < by},
and for each (yo + k)
Ei(yo + k) = {(zo + h) : Ai(To,yo + k; h) < 7(A,
(zo + h,yo + k) € E}.

Now for any (k,k) such that yp + k € E> and 2o + h € E|(yp + k),
we have (2o + h,yp + k) € E N R and therefore

A(To, yoi k. k) < Ay(To, yoi k) + A2(Zo, yo; k)
+ |h||D1u{xo, yo + k) — Dru(zo, yo)|
< 7|k + [k])-

From this conclude that
IBNRO {(x0+ h,yo + k) : A(Zo,y0; h, k) < 27([h] + k] }
> (1 -€)%(by —a))(b2 — a3) = (1 —€)?|R).

STEP 6. Take R to be a square with (zo, yp) as center and appeal to
Exercise 3.8 to reach the desired conclusion.

We continue to outline the proof that a function whose partial deriva-
tives exist almost everywhere agrees with a C? function on a set of
large measure. Let u be a real valued function defined on a measurable
set £ C R", and for each positive number M and = € E let

Az, M) = En{y: fu(y) - u(z)] < Mly - 2]}.

If A(z, M) has density 1 at x, u is said to be of approzimate linear
distortion at . Our objective is to show that if u is of approximate
linear distortion at each point E, then there exists sets E) such that
E = U, E; and u is Lipschitzian on each of the sets Ej.
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3.15.

3.16.
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STEP 1. If z, and z, are any two points of R*, then

_ |B(z1,]22 = 22) N B(z, |72 = 7:])
|B(.‘L‘[, II) - Ill)] + IB(Iz, Il‘z - I1|)|

is a positive number less than 1 which is independent of the choice of
z, and zj.

STEP 2. For each positive integer k, let Ex be the set of those points
z € E such that |u(z)| < k and that if r is any number such that
0 <r £ 1/k, then

|A(z, k) N B(z,7)|
|B(z, )|

>1-—a«.

Prove that £ = U2 | E.
STEP 3. In order to show that u is Lipschitz on Ey, choose any two
points xr,,z, € Ex. If 29 — x| > 1/k, then

lu(za) — u(x1)] < 2k3|x2 — 7).

Thus, assume that
1

0<|x2—1‘1|5;.

Let _
Ay = A(zy, k)N B(z1, |3 — 11])s
Az = A(x2,k) N B(zz, |22 — 7.]).
Prove that |4A; N A2] > 0. f £* € A; N A, show that
|u(z*) — u(z)| < k|lz° —z], $+=1,2
jz* — x| < |z3 — 24|, t=1,2

Now conclude that

lu(za) — u(z1)| < 2k|z2 -z,

STEP 4. If u has partial derivatives almost everywhere, appeal to the
previous exercise to conclude that u is of approximate linear distor-
tion at almost every point. Now refer to Theorem 3.11.6 to fiud a C!
function that agrees with u on a set of arbitrarily large measure.

Suppose u € W'P(R"™). Prove that for B, ;-q.e. z € R*, u is abso-
lutely continuous on almost every ray A; whose endpoint is .

Let f be a measurable function defined on [0, 1] haviug the property
that f' exists everywhere on [0,1] and that |f| is integrable. Prove
that f is an absolutely continuous function.
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Historical Notes

3.1. The idea that an integrable function has a representative that can be
expressed as the limit of integral averages originates with Lebesgue {LE2).
The set of points for which the limit of integral averages does not exist (the
exceptional set) is of measure zero. Several authors were aware that the
exceptional sets associated with Sobolev functions or Riesz potentials were
much smaller than sets of measure zero, cf. [DL], [ARS1}, [FU], [FL}, [GI].
However, optimal results for the exceptional sets in terms of capacity were
obtained in [FZ], [BAZ|, [MEZ2], [CFR}. The development in this section is
taken from [MIZ].

3.2. The results in this section are merely a few of the many measure
theoretic density theorems of a general nature; see [F, Section 2.10.9] for
more.

3.3. Theorem 3.3.3 was first established in {FZ] for the case k = 1, and for
general k in [BAZ], [ME2], and [CFR]. The concepts of thinness and fine
continuity are found in classical potential theory although their develop-
ment in the context of nonlinear potential theory was advanced significantly
in [AM], [HEZ2], [HW], [MES3). The proof of the theorem in Remark 3.3.5
was communicated to the author by Norman Meyers.

3.4. Derivatives of a function at a point in the LP-sense were first studied
in depth by Calderén and Zygmund [CZ}. They also proved Theorem 3.4.2
where the exceptional set was obtained as a set of Lebesgue measure zero.
The proof of the theorem with the exceptional set expressed in terms of
capacity appears in [BAZ}, [ME2], and [CFR].

3.5. The spaces T*(E), t*(E), T*P(z), and t*?(z) were first introduced
in [CZ) where also Theorem 3.5.7 was proved. These spaces introduce but
one of many methods of dealing with the notion of “approximate differen-
tiability.” For other forms of approximate differentiability, see [F, Section
3.1.2], [RR].

3.6-3.8. The material in these sections is adopted from [CZ]. It should
be noted that Theorem 8 in [CZ] is slightly in error. The error occurs
in the following part of the statement of their theorem: “If in addition
f € t8(zq) for all 2o € Q, then f € b,(Q).” The difficulty is that for
this conclusion to hold, it is necessary that condition (1.2) in [CZ] holds
uniformly. Indeed, the example in (WH] can be easily modified to show
that this uniformity condition is necessary. Theorem 3.6.3 gives the correct
version of their theorem. In order for this result to be applicable within the
framework of Sobolev spaces, it is necessary to show that Sobolev functions
are uniformly differentiable on the complement of sets of small capacity.
This is established in Theorem 3.10.4.

In comparing Whitney's Extension theorem (Theorem 3.5.3) with the
LP-version (Theorem 3.6.3), observe that the latter is more general in the
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gsense that the remainder term of the function u in question is required to
approach zero only in L? and not in L. Ou the other hand, the function
is required to be defined only on the set E in Whitney's theorem, while the
condition 4 € t*?(z) in Theorem 3.5.3 implies that u € LP[B(z, )] (for all
small r > 0) thus requiring u to be defined in a neighborhood of .

3.9. Theorem 3.9.4 and the preceding lemmas are due to Calderén [CA4];
the remaining results are from [BAZ].

3.10. The main result of this section is Theorem 3.10.2 which easily implies
that Sobolev functions are uniformly differentiable in Z? on the complement
of sets of small capacity. The proof is due to Lars Hedberg. Observe that
the proof of Theorem 3.10.2 becomes simpler if we are willing to accept a
subsequence {7, } such that

f 1) ~ ey = 0

uniformly on R*—U where B, ,(U) < ¢. This can be proved by the methods
of Lemma 2.6.4. However, this result would not be strong enough to apply
Theorem 3.6.3, thus not making it possible to establish the approximation
result in Theorem 3.10.5.

3.11. These results appear in {MIZ]. The main theorem (Theorem 3.11.6)
is analogous to an interesting result proved by J.H. Michael [MI] in the
setting of area theory. He proved that a measurable function f defined on
a closed cube Q C R™ can be approximated by a Lipschitz function g such
that

Ho: f(z) # 9(@)}] < e

and |A(f,Q) — A(g, Q)] < € where A(f, Q) denotes the Lebesgue area of f
on Q. Theorem 3.11.6 was first proved by Liu [LI] in the case m = £.
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Poincaré Inequalities—
A Unified Approach

In Chapter 2, basic Sobolev inequalities were established for functions in
the gpace W[f P(£2). We recall the following fundamental result which is a
particular case of Theorem 2.4.2.

4.1.1. Theorem. Let {} C R™ be an open set and 1 < p < n. There is a
constant C = C(p,n) such that if u € W) P(Q), then

”u"p‘;ﬁ < C"DU”l.p;ﬂ (4.1.1)
where p* = np/(n - p).

Clearly, inequality (4.1.1) is false in case u is the function that is identi-
cally equal to a non-zero constant, thereby ruling out the possibility that
it may hold for all u € W?(Q). One of the main objectives of this chapter
is to determine the extent to which the hypothesis that u is “zero on the
boundary of " can be replaced by others. It is well known that there are
a variety of hypotheses that imply (4.1.1). For example, if we assume that
{1 is a bounded, connected, extension domain {see Remark 2.5.2) and that
u is zero on a set § with |S| = a > 0, then it can be shown that (4.1.1)
remains valid where the constant C now depends on a, n, and 2. This in-
equality and others similar to it, are known as Poincaré-type inequalities.
We will give a proof of this inequality which is based on an argument that
is fundamental to the development of this chapter. A general and abstract
version of this argument is given in Lemma 4.1.3.

There is no loss of generality in proving the inequality with p* replaced
by p. The proof proceeds as follows and is by contradiction. If (4.1.1) were
false for the class of Sobolev functions that vanish on a set whose measure
is greater than a, then for each integer § there is such a function u; with
the property that

Nluillp.a = il Duillp.q-

Clearly, we may assume that |lu;[[15;n = 1. But then, there exist a sub-
sequence (denoted by the full sequence) and u € WP(Q) such that u;
tends weakly to u in W!P(Q2). By the Rellich-Kondrachov compactness
theorem (Theorem 2.5.1, see also Remark 2.5.2) u; tends strongly to u in
L7 (). Since |[u;f1,p;0 = 1 it follows that | Du,lj,.a — 0 and therefore that
|Dullpia = 0. Corollary 2.1.9 thus implies that u is constant on . This
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constant is not 0 since [|u||,o = 1. Now each u; is 0 on a set B, whose mea-
sure is no less than a. The strong convergence of u; to u in LP(R?) implies
that (for a subsequence) u; — u alinost everywhere on § = N§2, U2, Si.
Since |S| > a > 0, this contradicts the conclusion that u is equal to a

non-zero constant on (2.

A close inspection of the proof reveals that the result also remains valid if
we assume [, u(z)dz = 0 rather than u = 0 on a set of positive measure. In
this chapter we will show that these two inequalities and many other related
ones follow from a single, comprehensive inequality obtaied in Theorem
4.2.1.

4.1 Inequalities in a General Setting

We now proceed to establish an abstract version of the argument given
above which will lead to the general form of the Poincaré inequality, The-
orem 4.2.1.

4.1.2. Definition. If X is a Banach space and Y C X a subspace, then a
bounded linear map L : X — Y onto Y is called a projection if .o L = L.

Note that
Liy)=y. peY, (4.1.2)

for there exists £ € X such that L(z) = y and y = L{x) = L|L(z)) = L(y).

4.1.3. Lemma. Let X, be a normed linesr space with norm || ||o and let
X C Xo be a Banach space with norm || ||. Suppose || | = || llo + || |1 where
|| {l1 18 @ semi-norm and assume that bounded sets in X are precompact in
Xo. LetY = XN{z:|z|, =0}. If L: X =Y is a projection, there is a
constant C independent of L such that

iz ~ L(z)llo < CIIL|| 1z]ly (41.3)
forallz e X.

Proof. First, select a particular projection L' : X — Y. We will prove that
there is a constant C' = C’(}|L'||) such that

lz — L'(z)llo < C'liz]l1s (4.1.4)

for all £ € X. We emphasize that this part of the proof will produce a
constant that depends on L’.
If (4.1.4) were false there would exist z; € X such that

llzi = L'(z )0 > tllzilt, ¢=1,2,....
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Replacing z, by z;/|lx; — L'(z:)||o it follows that
loi — L'(z)llo =1 and ||z:]l, — 0.
Let z; = z; — L'(z,). Then

lzilly = llzi = L'(zi)lha < il + 0L ()t
< Nzl

since ||L'(z;)||s = 0. Hence, z; is a bounded sequence in X and therefore,
by assumption, there exist a subsequence (which we still denote by {2;})
and z € Xp such that ||z; — z]lo — 0. Since ||z;]l} — 0 it follows that z; is a
Cauchy sequence in X and therefore ||z; — z|]| — 0. Note that ||z]jp = 1 and
|zl = 0. Thus z # 0, z € Y, and L'(2) = z by (4.1.2). But L'(z;) — L'(2)
and L'(z;) = 0, a contradiction.

The next step is to prove (4.1.3) for any projection L where C does not
depend on L. Let L : X — Y be a projection and observe that

r—L(z)=z - L'(z) - L(z - L'(z)).
Hence, by (4.1.4),

lz — L{z)llo < = — L'(2)o + IL(z - L'(z))]lo
< C'llally + |IL(z = L'(2))]]
< C'lizlly + LI I(z — L' ()
< Cllzlla + ILIH{I(z = L' (=)o + Vizlla]

since ||L/{z)]j1 = 0. Appealing again to (4.1.4) we obtain,

lz - L(zx)llo < C'llzlly + LI [C'llz||y + lIzl1]
= (C"+ (C"+ DLl

Since L is a projection, ||L|| > 1 and the result now follows. o

We now will apply this result in the context of Sobolev spaces. In par-
ticular it will be convenient to take X = W™?({2).

For notational simplicity, in the following we will let the characteristic
function of 2 be denoted by 1. That is, let xq = 1. Also, let Px(R") denote
the set of all polynomials in R" of degree k.

4.1.4. Lemma. Let k and m be integers with 0 < k < m oend p > 1.
Let © C R" be an open set of finite Lebesgue measure and suppose T €
(Wm—k.2(02))* has the property that T(1) # 0. Then there is a projection
L : Wm™P(Q) — Px(R™) such that for each u € W™P(Q) and all |a] <k,

T(D*u) = T(D*P) (4.1.5)
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where P = L(u). Moreover, L has the form

L(v)= Y T(Pa(Du))z"

lef<k

where Py € Pp(R™), Du = (Dyu, Dau,...,Dyu}, and

k41
T EYe (ﬂ(il")) ,

C =C(k,p,|9)).

Proof. If P € Pi(R") then P has the form P(z) = Efﬂ:o a,z7 and
therefore

D*P(0) = ala,
for any multi-index . Consequently, by Taylor’s theorem for polynomials,
k—|al
a D°*AP(0)
D°P(z) = Z Tzﬁ
18)=0
or el
—la
a+ 9!
DaP(I) = Z aa+ﬁ(‘T)xa'
181=0
In particular,
D®P(z) = ana!

if |a) = k. Thus, in order to satisfy (4.1.5), the coeflicients a, of the poly-
nomial 1nust satisfy

_ T(D%u)

% = AT’

if |a| = k. Similarly, if |a] = k£ — 1 then

(4.1.6)

(o +m!zﬁ.

D°P(z) = aga! + Z Ga+g A

181=1
Consequently by using (4.1.6), (4.1.5) will hold if

_ T(D%u) (a + BN T(zP)
G =) T D das alft T

181=1
where |a| = k — 1. Proceeding recursively, for any |a| < k we have

_T(w) K (a4 h)T(H)
fa = a!T(1) ‘“El“aw B T(1)

(4.1.7)
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It is easily verified that L is a projection since L(u) = P implies D*[L(u)} =
D= P for any multi-index a. But then,

T(D*u) = T(D*P) = T[D*(Lu))]

and reference to (4.1.7) yields the desired conclusion.
In order to estimate the norm of L, let u € W”‘ ?(2) with fufmppn < 1.

Then ||L|| < |L(6)|lm,p:2 = || P} m,p:2 Where P(x Eh[—o a,z7. Now

k
1Pz < C(I) Y lasl-

|¥|=0

To estimate the series, first consider |aq|, |a| = k. Note that for |a| = &
and any non-negative integer ¢,

a'T(1)  o'T(1)+ <Cp 19D (T(l)) (4.1.8)

because T(1) < |Q|'/?||T|. In particular, this holds for £ = k. Heuce from
(4.1.6) it follows that

T T\ 5+
ool < s < Clk.p ,|9|)(m)) . (41.9)

If|le| = k-1, k > 1, then from (4.1.7), (4.1.9) and the fact that ||T'||/T'(1) >
|2~ 1/»,

I7]!

o I
= a'T(1)

+CUk ) 3 aarazr
181=1

< C(k,p, 1) (ﬂ(lu))

k+1
<cikplan (L)

In general, if |a| = k — i, k > ¢, we have
I\t
<
ol < Ck,p 00 (LT

k+1
< cpia) (1)

Proceeding in this way, we find that

k+1
ILIl < Clk,p,100) (—'T%) | o
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In the preceding analysis, if we knew that the distribution T was a non-
negative measure g, then we would be able to improve the resuit. Indeed,
suppose the measure satisfies the inequality

/ z%dpu(z) < Mu(Q) (4.1.10)
a

for every |a| < k. Of course, such an M exists if either 2 or spt u is hounded.
Then the estimate of ||L|| becomes sharper because, with T = y, the terin
T(z?)/T(1) in (4.1.7) is bounded above by M, thus implying that

I

L) SC(k.p,M)T(l).

Hence, we have the following corollary.

4.1.5. Corollary. Let k and m be integers with 0 < k < m and p > 1.
Let  C R™ be an open set and suppose p € (W™ %P(Q))* is a non-
negative non-trivial measure satisfying (4.1.10). Then there 1s a projection
L:WmP() - P.(R™) such that for each u € W™P(Q?) and all || < k,

p(D°u) = u(D*P) (4.1.11)

where P = L(u). Moreover, L has the form

L(u)= Y p(Pa(Du))z"

Jaj<k

where P, € Px(R"), Du = (D,u, Dyu, ..., Dyu), and

L <c. (%)

C = C(k,p, M).

4.2 Applications to Sobolev Spaces

We now consider some of the consequences of the previous two results when
applied in the setting of Sobolev spaces. Thus, if 0 < k < m are integers,
p > 1and Q C R™ is a bounded, connected, extension domain (sec Remark
2.5.2), we employ Lemma 4.1.3 with X = W™?(Q) and X, = W*?(2). It
follows from the Rellich-Konrachov imbedding theorem (sce Exercise 2.3)
that bounded sets in W™?(f) are precompact in W*P(Q). Set |ullo =
llullx p and lully = |D** 'ullpm_(k41),p.0 where D¥+1u is considered as the
vector {D*u} ja| = k + 1. Clearly, |lu|| = |lullo + |lully is an equivalent
norm on W™#(Q), Moreover, it follows from Exercise 2.7 that |||, = 0 if
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and only if u € Px(R"). If T € (W™~%?(Q))" with T(1) # 0, then Lemma
4.1.4 asserts that there is a projection L : W™ ?(Q2) — P, (R™) such that

k+1
Il <c (#%) .

Therefore, Lemma 4.1.3 implies

ls = L(w)llx.pi2 < CULIND** ' tllm— g4y 0

I\ **
<C (Tm | D** ][ = 4 1) i

These observations are summarized in the following theorem.

4.2.1. Theorem. Suppose 0 < k < m are integers and p > 1. Let Q C R"
be a bounded, connected extension domain. Let T € (W™ %P(Q))* be such
that T(1) # 0. Then, if L : W™P(Q2) — P, (R") is the prajection associated
with T,

7

k+1
||u—L(u>||k,,,;nsc(T(—1)) 1Dl anyp (421)

where C = C(k,p,§2).
It will now be shown that the norm on the left side of (4.2.1) can be

replaced by the LP -norm of u — L{u), where p* = np/(n — mp). For this
we need the following lemma.

4.2.2. Lemma. Suppose m > 1 is an integer and p> 1. Let R C R™ be a
bounded extension domain. Then for each integer k, 1 < k < m —1, end
€ > 0 there is a constant C = C{n,m,p, k,€,§2) such that

“Dku"p;ﬂ < Cllujlp.a + €l D™ ullpn, v € WTP(Q) (4.2.2)

whenever u € W™P(Q).

Proof. We proceed by contradiction. If the result were not true, then for
each positive integer t there would exist u; € W™P?(Q2) such that

"Dkui"paﬂ > i"“i"p;ﬂ + Elleuinp;ﬂ- (4.2.3)

By replacing u; by u;/||ti|lm p.0 we may assume that ||u;|lmp0 = 1, ¢ =
1,2,.... Hence, from Exercise 2.3 there is u € W™?(£2) and a subsequence
(which we assume without loss of generality is the full sequence) such that
u; — u strongly in W™~ 1#(Q2). In particular u; — u in L?(Q2). Since

"Dk“l"p;ﬂ < uillm-1p02 < |14 l{m 0325 (4.2.4)
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it follows from (4.2.3) that u, — 0 in LP(Q) and therefore u = 0. But then
u; — 0 in W™~1P(2) and consequently || D*u;ll,.;0 — O by (4.2.4). This
implies that ||D™u,||,.0 — 0 or u; — 0 in W™P(R), a contradiction to the
fact that ||t,|lm.p0 = 1. o

If v € W™?(R"™) has compact support, then it follows from the funda-
mental Sobolev inequalities, namely Theorem 2.4.2, 2.9.1, and 2.4.4 that

llvllpe < Cllvlim,p
where p* is defined by
1 1 m .
—=-—-—if mp<n,
p* p n
1<p*" <0 if mp=n,

and
p =00 if mp>n.

Since  C R™ is an extension domain, u € W™P({) has an extension
to v € W™P(R™) with compact support such that ||v[lm, < Clltl|m g0
Therefore,

lulps:a < C”""p'
< Clivllm,p
< Cllullm pi
< Clllullpio + 1D ullp;0] (4.2.5)

by Lemma 4.2.2. Now apply this to (4.2.1) while observing that D*(L(u)) =
0, |a] = m, and obtain

lu = L(w)llpei0 < Cllu— L(u)|pa + |1 D™ ullp:al
<C ( "T” ket "Dk+1u||
< T—.(l) m=(k+1),p:52-

We have thus established the following result.

4.2.3. Corollary. With the hypotheses of Theorem 4.2.1,

[£4] —
lu— L(u)llp-.a < C () 1D ol — (k4 1)pi02-

4.2.4. Remark. In many applications it is of interest to know when L(u) =
0. In this connection we remind the reader the coeflicients of the polynomial
L(u) are given by (4.1.7) and will be zero if T(D%u) = 0 for 0 < |a] <
k. The question of determining conditions under which L(u) = 0 will be
pursued in Sections 4.4 and 4.5.
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4.3 The Dual of W™?(Q)

In order to obtain more information from inequality (4.2.1) it will be helpful
to have a representation of (W™®(Q))*, the dual of W™?(Q). This is easily
accomplished by regarding W™?(Q) as a closed subspace of the cartesian
product of LP(Q).

To this end let

N=Nmnm= ) 1

o<lalsm

be the number of multi-induces a with 0 < |a| < m. Let

N
L) = HL”(Q).

i=1

L%, (R) is endowed with the norm

m 1/p
( Y ||vanz;n) if 1<p<oo
llvllp,~i0 =

|a}j=0

max . if p=
05|a[5m"v||°°’n if p=o0

where v = {va} € L}, ().

4.3.1. Theorem. Let 2 C R™ be an open set. Then each linear functional
T € (W™P(Q))*, 1 < p < oo, can be represented as

T(u) = i -/;va(z)D"'u(z)dx Jor ue W™P(Q), (4.3.1)

[al=0
where v = {v,} € L%(Q).

Proof. Clearly, the right side of (4.3.1) defines an element T € (W™ ?(Q))*
with

ITIN < Cllvllp.n:a,
see (2.1.5). In order to express T(u) in the form of (4.3.1) first observe
that W™?(Q) can be identified as a subspace of L},{Q). The operator
D : W™P(Q) — L} () defined by

D(y)={D%}, O0<|al<m

has a closed range since W™-?({) is complete. Define a lincar functional
T* on the range of D by

T*[D(u)] = T(u), ue€ W™P(Q).



186 4. Poincaré [nequalities —A Unified Approach

By the Hahn-Banach theorem, there is a norm preserving extension T’
of T* to all of L}, (f2). By the Riesz Representation theorem, there exists

v={va} € Lﬂ;(ﬂ) such that

T (w) = Z -/;va(z)wa(z')dz

ja|=0

whenever w = {w,} € L% (Q). Thus, if u € W™P(2), we may regard
N

Du = {D,u} € L} (£2) and therefore

T(u) = T*[D(u)] = T'(Du)

=Y /n va(z)D%u(z)dz. ]

Ja|=0

In the event that @ C R" is a bounded extension doinain, the repre-
sentation of (W™P(Q2))* is slightly simpler, as described in the following
result.

4.3.2. Theorem. If 2 C R™ 1s a bounded extension domain and 1 < p <
00, then each element T € (W™ ?(2))* can be represented as

T(u) = /n (vu+ > vaD"u)dz (4.3.2)

|lal=m

where v, va € L (), |a| = m.

Proof. The proof is almost the same as in Theorem 4.3.1 except that now
W™#(Q2) can be identified with a subspace of L%, (2) where N = k(m) +1,
and k(m) = the number of multi-indices a such that |a| = m. Thus u €
Wm™2(Q) is identified with (u, {D%6}ja)=m). In view of Lemma 4.2.2 this
provides an isometric embedding of W™?(2) into L}, (). u]

It is useful to regard the restriction of the linear functional T in Theorems
4.3.1 and 4.3.2 to the space Z () as a distribution. Indeed, if ¢ € Z ()
is a Schwartz test function (see Section 1.7), then from (4.3.1) we have

T(e)= Y /Q vaD%pdz (4.3.3)

|a|=0

where v, € L*' (). In the language of distributions, this states that T is a
distribution in 2 with

T = f: (=1)lel Dey, (4.3.4)

{a)=0
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where v, € L¥ (). Similarly, if T is the functional in Theorem 4.3.2, then

T=v+ Y (-1)F'D%, (4.3.5)

laj=m

where v, v, € LP’(Q). However, not every distribution T of the form (4.3.4)
or (4.3.5) is necessarily in (W™?(£2))*. In case one deals with Wy"?(2)
instead of W™®(Q), distributions of the form (4.3.4) or (4.3.5) completely
describe the dual space, for if T is a distribution as in (4.3.4), for example,
then it possesses a unique extension to Wy ?(Q). To see this, consider
u € Wy"?(R) and let {p;} be a sequence in P () such that p; — u in
Wy (). Then

m
IT(p:) = T(wi)| = | ) _/n"aD"Wi—"aD“wdl

lal=0
< 3 ID%(wi = 0p)lpllvally o
lai=0
< i - Wj"mp”"a"p'.“ -0
as i,j — o0o. Thus, T'(p;) converges to a limit, denoted by T(), which is
well-defined. T is clearly linear and bounded, for if ¢; — u in Wy P(Q),
then
IT(w)| = lim [T(p:)] < lim [Tl lillmp
= IT Nzlim,p-

The norm ||T|| in this context is defined relative to the space Wy ().
These remarks are formalized in the following theorem.

4.3.3. Theorem. Let 1 < p < 0. If 2 C R" 1s an open set, then the dual
space (W, P(Q))* consists of all distributions T of the form

m

T=) (-1)*D%,

la[=0

where v, € LP (Q). If Q is a bounded extension domain, then (W7 (Q2))"
consists of those T such that

T=v+ Y (-)FID,
laj=m
v, v, € [P ().
The dual space (W™P(f2))" is denoted by W7 (Q).
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4.4 Some Measures in (Wg'7(Q2))*

We now exploit Theorem 4.2.1 and its Corollary 4.2.3 to derive some of the
most basic and often used Poincaré-type inequalities. These inequalities
are obtained below by considering Lebesgue measure and its variants as
elements of (W™ ?((2))*.

In order to demonstrate the method that employs the results of Section
4.2, we begin by reproving the inequality

I D*ullp < C|ID™ull, (4.4.1)

for u € Cg°(R"), where 0 < k < m are integers and p > 1. Suppose that the
support of u is contained in some ball: sptu C B(0,r). Let 2 = B(0,2r).
With this choice of 2, we wish to apply Corollary 4.2.3 by selecting T so
that the associated projection L will have the property that L(u) = 0.
Then by appealing to (4.2.2), we will have established (4.4.1). Define T €
(Wm=kp(Q))" by

T(w) = / vwdz
ol
for w € W™%»(9), where v = X (o 2r)-B(0,r)- Since spt u C B(0,7),
T(D®u)=0 for 0< |a|<k

and therefore L(u) = 0 by Remark 4.2.4. Hence, (4.4.1) is established.

In case (2 is a bounded open set and u € C§°(2), a similar result can
be established by defining u to be identically zero on the complement of Q
and by considering a ball B(0,r) that contains Q2. Since C§°(€2) is dense
in WJ“”(Q) the following is immediate. (Of course, this resuit also follows
from the inequalities established in Chapter 2.)

4.4.1. Theorem. Let Q C R™ be a bounded set. Let 0 < k < m be integers
and p 2 1. Then, there 18 a constant C = C(k,m,p, diam Q) such that

”Dkullpzﬂ < C|D™ul|p.-
for ue WP (Q).
A slight varjation of the preceding argument leads to the following results.

4.4.2. Theorem. Suppose 0 < k < m are integers and p > 1. Let § be a
bounded extension domain. Suppose u € W™ P(§2) has the property that

/D“udx=0 Jor 0<|a| Lk,
E

where E C Q 1s a measurable set of positiwve Lebesgue measure. Then,

lullepi < CID** Ullme (ke r) pm
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where C = C{k,m,p, Q, |E|).

Proof. Define T € (W™~*?(Q))* by
T(w) =/ wdz, we€ Wm5P(Q)
E
Then T(1) # 0,
T(D%) =0 for 0<|o| <k,
and therefore by Remark 4.2.4 the associated functional L has the property

that L(#) = 0. The result now follows from Theorem 4.2.1. O

4.4.3. Corollary. If u € W™P(2) has the property that D®u = 0 almost
everywhere on E for 0 < |a| < k, then

"u”k.p;ﬂ S CIIDk+1u|Im—(k+1).p;ﬂ'

Theorem 4.4.2 provides a Poincaré-type inequality provided the integral
averages of the derivatives of u over a set E of positive measure are zero. In
the next result, the integral average hypothesis is replaced by one involving
the generalized notion of median of a function. If the sets A and B below
are of equal measure, then we could think of 0 as being the median of u
over AU B.

4.4.4. Theorem. Let § € R™ be a bounded ertension domain and let
u€ WhP(Q), p> 1. Suppose u >0 on A and u < 0 on B, where A and B
are measurable subsets of (! of positive Lebesgue measure. Then

sl < Cl\Dullpa
where C = C(p,n, |4|,|B|).

Proof. Let

a=/udz and ﬁ=/udz
A B
and define T € (W!?(Q))* by

T(w) = -/r;vwdz, w e WHP(Q)

where v = (1/a)xa — (1/8)xp. Then T(u) = 0 and the result follows from
Theorem 4.2.1 and Remark 4.2.4. o

4.4.5. Remark. In the remainder of this section, we will include a small
developrment of the notion of trace of a Sobolev function on the boundary
of a Lipschitz domain as well as some related Sobolev-type inequalities
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(Theorem 4.4.6 and its corollary). This material will be subsumed in the
development of BV functions in Chapter 5, but we include it here for the
benefit of the reader who does not wish to pursue the BV theory.

If Q C R" is a bounded Lipschitz domain and u« € W!?(R2), 1 < p < oo,
it is possible to give a pointwise definition of u on 9 in the following way.
Since {1 is an extension domain, let & denote an extension of u to all of
R" where 2 € W"P(R"). Therefore, & has a Lebesgue point everywhere on
R™ except possibly for a set of B, ,-capacity zero (Theorem 3.3.3). Since
p > 1, we know from Theorem 2.6.16 that sets of By p-capacity zero are of
H"™ !'-measure zero and therefore @ is defined H™~!-almost everywhere on
0. We define the trace of u on 0 by setting u = @ on OS2,

We now show that this definition is independent of the extension 4. For
this purpose, we first show that at each Lebesgue point xp of 4, there is a
measurable set 4 such that the Lebesgue density of A at zp is 1 and that
i is continuous at rq relative to A. Since

f la(z) — G(zg)ldz -~ 0 as r — 0,
B(’Ovr)

for each positive integer i, there is a number r; such that the set E; =
R" N {z : |u(z) — u(zp)] > 1/i} has the property that

|B(xg,r) N E{|

<273 for r<r;. 4.4.2
1B(zo, 7 < (442)

We may assume that the sequence {r;} is strictly decreasing. Let

[o o]
E = | JiB(zo,7:) - B(zo,r-1)) N Ei.
i=1
We now will show that the Lebesgue density of E at x; is zero, that is
. |B(za,r) N E} _

lim

T T 0. (4.4.3)

Choose a small r > 0 and let £ be that unique index such that ry,; <
r < rx. For notational simplicity, let B(r) = B(zp,r). Then from (4.4.2) it
follows that

1B(r) N E| < || JI(B(r) N E) N (B(r:) — B(riz))]

1=k
<27%(B(r)|+ ) 27YB(n)]
i=k+1

< 27%|B(r)| + 27%|B(r)|
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which establishes (4.4.3). Clearly, if we set A = R™ — E we have that u is
continuous at rp relative to A and that the Lebesgue density of A at z, is
one.

Because (2 is a Lipschitz domain, the boundary of Q is locally repre-
sentable as the graph of a Lipschitz function. Thus, the boundary can
be expressed locally as {(z, f(z)) : £ € U}, where U is an open ball in
R™ ! and f is a Lipschitz function. Recall from Theorem 2.2.1 that a Lip-
schitz function is differentiable almost everywhere. Moreover, the function
f:R"! — R" defined by

f(@) = (z, f(z))

is Lipschitz and carries sets of Lebesgue measure zero in R"~! into sets of
H™~!-measure zero in R*. Consequently, 3§ possesses a tangent plaue at
all H"~1.almost all points of 9. From this it is not difficult to show that
: LB(zm')r“u _ 1

| —_———— 1 =
re>  |B(zo, 1| 2’

for H™~1.almost all p € 9. Since the Lebesgue deusity of A at x is equal
to one, it follows that
IB(zg,7) NN A|

1
Ii = -,
rl—% |B(zo, 1)l 2

Also, because u i8 continuous at z, relative to A, it is clear that

:l_l_l.gn u(x) = (o).
r€ENNA

This shows that the value of %(zp) is determined by u in €2, thus proving
that the trace of u on the boundary of €2 is independent of the extension
i,

In the statement of the next theorem, we will let x4 denote the restriction
of (n — 1)-dimensional Hausdorff measure to 3Q. That is u(4) = H* (4N
Q) whenever A C R™.

4.4.6. Theorem. Let 2 C R" be a bounded Lipschitz domain and suppose
ue W?(Q), 1< p< oo Let

c(u)=/ udH™! =/ udu.
N an

Then u € (WHP(Q))* and

(./;: |u— c(u)|’.dx)l/p. <C (/ﬂ |Du|”dz)1/p )
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where p* = np/(n —p) and C = C(n,p, Q).

Proof. Because Q is a bounded Lipschitz domain, u has an extension

to all of A" such that ||ill, , < Cllu||1 p.0- By multiplying & by a function

@ € C3°(R™) with p = 1 on £, we may assume that @ has compact support.
In order to show that u € (W!?(9))°, we will first prove that

[vduscivls, (4.4.9)

whenever v is a non-negative function in C§°(R"). From Lemma 1.5.1, we
have

/vdu = /000 u(Ey)dt (4.4.5)

where E, = {z:v(z) > t}. By the Morse-Sard theorem, for almost all ¢,
E, is bounded by a smooth manifold. We now borrow an essentially self-
contained result of Chapter 5. That is, we employ Lemma 5.9.3 and Remark
5.4.2 to conclude that for all such ¢, E, can be covered by balls B(z;,r;)
such that

oo
Y Tt < CHM Mo (1)), (4.4.6)

i=1
where C is a constant depending only on n. Because 812 is locally the graph
of a Lipachitz function, it follows from (1.4.6) that there is a constant C

such that u(B(z,r)) < Cr"~!. Thus, from (4.4.6) it follows that

u(Ey) < ) u(B(ziyri))

S, 107

Tl S CH YN vT(®).

IA

C

Il
-

Appealing to (4.4.5) and co-area formula (Theorem 2.7.1), we have

/udu=/0°°u(m)dc

00
sc [T Hm o e
0
= C||Dvl|
< CDv|lp
< Clivlh,p,
thus establishing (4.4.4).

If v is now assumed to be a bounded, non-negative function in W!?(R"),
we may apply (4.4.4) to the mollified function v.. From Theorem 1.6.1 we
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have that |lve — v||;, — 0 and that v(z) — v{z) whenever z is a Lebesgue
point for v. From Theorem 3.3.3 we know that v has a Lebesgue point at al}
T except possibly for a set of B, ; capacity zero, therefore of H"~'-measure
0, and therefore of yu-measure 0. Consequently, by Lebesgue’s dominated

convergence theorem,
/ vedp — / vdy.

It now follows that (4.4.4) is established whenever v is a non-negative,
bounded function in W?(R™).
If we drop the assumption that v is bounded, then we may apply (4.4.4)

to the functions
(z) = k if v(z)2>k
Vel = L o(z) if w(z) < k.

It follows from Corollary 2.1.8 that v, € W1?(R"™) for k = 1,2,.... Thus,
an application of the Monotone Convergence theorem yields (4.4.4) for non-
negative functions in W1?(R"), in particular, for #* and @~. Hence (4.4.4)
is established for .

From Remark 4.4.5 we have that u = & H™ '-almost everywhere on 92,

and therefore
/ udy = / udp

< Cllujh,,
< C”U”l.p;n'

Thus, we have shown that g € (W'?(2))*, and reference to Corollary
4.2.3 completes the proof. ]}

The following is an immediate consequence of Theorem 4.4.6.

4.4.7. Corollary. If Q is a bounded Lipschitz domain and u € W1?(Q),
p>1, then

/8 wdH™ ' < C |lully s + | Dullpa]
[4]

and
Il < C [uuun,,;n ' /8 nudH"“] .

As mentioned in the beginning of Remark 2.4.5, these inequalities will
be extended to the situation when u € BV, thus including the case p = 1.

4.5 Poincaré Inequalities

Here we further develop the results in Section 4.2 to obtain Poincaré-type
inequalities for which the term L(u) in inequality (4.2.1) is zero. We will
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show that this term vanishes provided the set {z : u(z) = 0} is sufficiently
large when measured by an appropriate capacity.
First, recall from Corollary 2.6.9 that if A C R™ is a Suslin set, then

By p(A) = sup{Byp(K) : K C A, K compact}.

Moreover, if K C R™ is compact Theorem 2.6.12 implies that there is a
non-negative measure u such that spt u C K,

lge * pslipr < 1,

and
u(R™) = [Bep (K7
Now consider u € W™~*?(Q) where 2 C R" is a bounded extension
domain. Then u has an extension @ defined on R™ such that ||i|lm—kp <

Cllt|lm-k.p;0. Without loss of generality, we may assume that & has com-
pact support. From Theorem 2.6.1 it follows that & has the representation

ﬁ=ym—k*f

where f € LP(R") and || fllp ~ ||&|lm—k,p-
Now suppose that 4 is a non-negative measure with the properties that
sptu C Q and
9m—k * 4t € LP (R")
where k is an integer, 0 < k < m. Observe that x can be considered as an
element of (W™ %(Q))* for if we define T: W™—*%(Q) — R! by

T(u) = /udp,
then,
/udﬂ=/ﬁdu
=/ym_nfdu

= /gm_k *u - fdz, by Fubini's theorem,

< gm—-« * psllpr | fllp, by Holder's inequality,
SCligm-x* ullp "ﬁ"m—k.p’
L Cligm—t * ““P' "unm—k.p;ﬂ- (4.5.1)

Thus, i € (W™—*P(Q))*.
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This leads to another application of Theorem 4.2.1 which allows the
main constant in the inequality to be estimated by the capacity of the set
on which u vanishes.

4.5.1. Theorem. Let Q € R™ be a bounded extension domein and let
A C R"™ be a Suslin set with By, _i p(A) > 0 where 0 < k < m are integers
and p > 1. Then, there exists a projection L: W™P()) — Pi(R") such that

e = L()llsp2 < C (i p(A) /7 1D tllm_ns1) 0
where C = C(k, m,p, ).
Proof. From the above discussion, there exists a non-negative measure p

such that y4 is supported in A,

gm—k * l‘”p' <1
and
#(R™) > = (Bmoip(A)7.

If we set T = & in Theorem 4.2.1, we have T(1) = u(R®) > 0 and from
(4.5.1) that

N -

IT < Cllgm—& * pllyr < C.
The result now follows from Theorem 4.2.1 and Corollary 4.1.5. @]
4.5.2, Corollary. Let u € W™P(Q) and let
N=0n{z:D%(z)=0 for all 0 < |a| < k}.
If Bm-xp(N) >0 then
lullepin < € (Bm-kp(N)) ™2 ID**  tllm- (k410

and

lully+0 < C(B —k,p(N))ﬂllp ”DkH“"m—(kH).P;ﬂ'

Proof. The coefficients of the polynomial L(u) in Theorem 4.5.1 depend
upon

T(D%u) = /D"u du

for 0 < |a| < %, and thus are all zero, (see Remark 4.2.4). The second
inequality follows from Corollary 4.2.3. a

Because of the importance of the case m = 1, k = 0, we state the Poincaré
inequality separately in thig situation.

4.5.3. Corollary. If u€ WiP(Q), then
flully=s2 < C (B1p(N))~'/? || Dullpa (4.5.2)
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where N = {z : u(z) = 0}.

4.6 Another Version of Poincaré’s Inequality

We can improve the inequalities of Corollary 4.5.2 if we allow dependence
on the set NV and not merely on its capacity. In particular, if j, k, and m are
integers such that 0 < j < k < m, then the assumption Bpy _x ,(N) > 0 will
be replaced by the weaker one, B,,_(,_j),(N) > 0, provided an additional
condition is added which requires dependence on the set /N in the resulting
inequality.

To make this precise let §2 be a bounded extension domain and let N ¢
be a Suslin set with the property that

B (k-5)p(N—=2)>0 (4.6.1)
for every set Z of the form

Z= () {z:D°P(z)=0, 0# P € Py(R")}. (4.6.2)

la)<k—j

These sets comprise a subclass of the class of algebraic varieties. Thus, for
any algebraic variety of the form (4.6.2), we require some subset of N of
positive capacity to lie in the complement of Z.

Let M(N) denote the set of all non-negative Radon measures g com-
pactly supported in N such that

Im—(k—j) * 4 € LP (R").
Consider all functionals of the form

T(u) = /D“u du, p€ M(N), (4.6.3)

where |a| < k—j. We will verify that all such T are elements of (W™?(Q))*.
Let u € W™P(Q). Since {2 is an extension domain, there is an extension %
of u to R with ||ii||m p < C||ts|lm,p:n. From Theorem 2.6.1, we know that &
has the representation i = g, * f, where f € LP(R") and || f{l, ~ [|i/lm.p-
Since u is supported in N C 12, it follows that

/D“udu:/D“ﬁdu.

But D*u € Wm~1al?2(R"™) and therefore

D% =gm_ja| * 9
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where g € LP(R™). By Fubini’s theorem we have

Josdn= [ on-iar =gt
= /gm-kx[ * fi- g de.
It follows from (2.6.2) that

Im—{a) * & = G¢ * (Gm—(k=3) * 1),

where £ = (k — j) — |a|. Since gp_(x—j) * pp € [)"(R") by assumption and
ge € L1(R™), it follows from Young's inequality that Gm—|n| ¥ 14 € L (R").
Therefore an application of Holder’s inequality yields

[ooudi= [ gy gis
< N9m—ia) * aallp llgll»
S ”gm—|a| * I‘"P' "Da{‘"m—lal,p'

However,
“Doﬁ"m—h[,p < "{‘"mp < C"“""‘-P'

thus proving that T € (W™2(Q))*.
Let V C (W™?(£1))* be the space spanned by all such functionals T as
defined in (4.6.3). Let

Vo= {T|P::T eV},
so that ¥y C P;. Observe that
dim ¥y = dim P, (R")

or

Vo = [Px(R™)]",
for if this were not true, there would exist 0 # P € Pi(R") such that
T(P) =0 for every T € V. This would imply
[poPdu=0, lal<k-;

for all 4 € M(N). That is, from Theorem 2.6.12, this would imply
D®P(z) = 0,

for Byn_(k—;)-q.¢. £ € N and |a| < k — j, a contradiction to (4.6.1) and
(4.6.2). Therefore dim Vo = dimPx(R") or Vo = [Px(R")]*. This implies
the existence of T, € V such that

Ta(zP) = b0 p. (4.6.4)
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Hence, if we define L : W™?(?) — P,(R") by

L(u) = i To(u)z?, (4.6.5)

Jal=0

then (4.6.4) shows that L is a projection. An appeal to (4.1.3) results in
the following theorem.

4.6.1. Theorem. Let @ C R™ be a bounded extension domain. Suppose
N C 2 is a Suslin set such that (4.6.1) is satisfied. Then, with L given by
(4.6.5), there is a constant C = C(j,k,m, N,§?) such that

Nu = L)k < CUD** 6llm -kt 1) 002

The special nature of the projection L is what makes this result inter-
esting. For example if we assume that D®u = 0 on N except possibly for
a By, - (k-j),p-null set, then all T of the form (4.6.3) are zero and therefore
L(u) = 0. The following is a consequence.

4.6.2. Corollary. Let 2 C R™ be a bounded eztension domain. Suppose
N C Q is o Suslin set such that (4.6.1) is satisfied. If w € W™P(Q) is such
that

D%u(z) =0 for Bpn_x—j)p-qe z€N

end all 0 < |a| < k — j, then
lsllk.pie € CUD* ' tllmo k1) 00

where C = C(j, k,m, N, Q).

4.7 More Measures in ( W™P(§2))*

The general inequality (4.2.1) involves a projection operator L : W™?(Q) —
Pi(R™) which is determined by an element T € (W™%?(Q2))". It is there-
fore of importance to have an ample supply of elements in the dual of
Wm=kPr(Q) that are useful in applications. In Section 4.4 we have already
seen that Lebesgue measure (more precisely, suitably normalized measures
which are absolutely continuous with respect to Lebesgue measure) and
normalized (n—1)-dimensional Hausdorff measure belong to (W™ ~*2(())*.
The fact that these measures arc elements of (W™~ %?(2))* allowed us to
deduce interesting Poincaré-type inequalities. In this section we will per-
form a finer analysis to establish that a large class of measures belong
to (W™~52(Q))*, including those that are obtained as the restriction of
Hausdorfl measure to sub-manifolds of appropriate dimension in R™.
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We begin with a result that provides a generalization of the Sobolev
inequality for Riesz potentials and also gives us a method of exhibiting a
large class of measures that are elements of (W™=%?())*. It will depend
on the Marcinkiewicz Interpolation Theorem which we state here without
proof.

Let (pp,go) and (p,;, q1) be pairs of numbers such that 1 < p; < ¢; < oo,
t =0,1, po < p1, and go # q1. Let u be a Radon measure defined on R"
and suppose T is an additive operator defined on C§°(R™) whose values are
u-measurable functions. The operator T is said to be of weak-type (pi,q;)
if there is a constant C; such that for any f € Cg°(R™), and a > 0,

w({z : (T)(Z)] > a)) < (@ ' Cillfllp.)*-

4.7.1. Theorem (Marcinkiewicz Interpolation Theorem). Suppose T is
stmultaneously of weak-types (po,qo) and (p1,q1). If 0 < 8 <1, and

1/p= 1—0+ 8
Po F 4
1-6 (/]
l/g = + —,
do 141

then T is of strong type (p,q); that is,
1T llew < CC°CHIS s, f € CE2(RT),
where C = C(py,¢;,0),t =0, 1.

We are now in a position to prove the basic estimate of this section which
is expressed in terms of the Riesz kernel, I, that was introduced in Section
2.6.

4.7.2. Theorem. Let i be a Radon measure on R™ such that for allz € R®
and 0 < r < 0o, there is a constent M weth the propesty that

u|B(z,7)] < Mr®

where a = g/p(n—kp), k> 0,1 <p<g<oo, and kp < n. If f € LP(R"),
then

1/q
(/100 sra) = < caengy,
where C = C(k,p,q,n).
This inequality is obviously an extension of the Sobolev inequality for

Riesz potentials that was established in Theorem 2.8.4. In that situation,
the measure u is taken as Lebesgue measure. In Remark 4.7.3, we will
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discuss further what other measures play an important role in the inequality
of Theorem 4.7.2.

Proof of Theorem 4.7.2. For t > 0 let
Ac={y: I+ |fI(y) > t}.

Our objective is to estimate u(A,;) in terms of || f||,. Let x4 = 4| A;. Then

w40 < [ Iowifldn= [ 1n1f1d
A

= /ﬂ T (@)l f(2)ldz (47.1)

where the last equality is a consequence of Fubini’s theorem. Referring to
Lemma 1.5.1 it follows that

Iy p(z) = 7—(15 _/:o I [B (r,r‘/“‘"‘))] dr

= ("ly(_;:)k) /000 p,[B(z,r)]r"_"_ldr.

For R > 0 which will be specified later, (4.7.1) becomes

(n — k) R -n—
tu(Ay) < W/u ./R'- If(x)lu,[B(z,r)]rk Ydz dr

(n—k) [ r)jrk-n-1 T
+ (k) /n ./R'- |f ()| e[ Bz, 1)) dzd

=I5 + 1. (4.7.2)

Since u[B(z,r)] < Mr® by hypothesis, the first integral, I, is cstimated
by observing that

m|B(z,7)] < wi{B(z, 7)]/¥ (Mr®)'/P
and then applying Holder’s inequality to obtain
- R 1/p'
s S [ wlBnias) koo
0 R"

v(k)
(4.7.3)
We now will evaluate

/R w]B(z,7))dx.
For this purpose, consider the diagonal

D= (R" x R*)n{(z,y) : = = y}
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and define for r > 0,
D, =(R"xR")n{(z,y): |z — 9| < ).

Finally, let F = xp,. Then, by Fubini’s theorem,

-memma=/hgwfmwu

= [ [ Fendniwa
=/anm”“““)

I

/1B
a{r)r u(4r).

Therefore (4.7.3) yields

p(n - k)
hs ok -

Similarly, by employing the elementary estimate

- a)] 1£1l,M /Pa(n) /P u(A)"/¥ RE-(n—o)p,

mlB(z,)] < mlB(z,r)]'/" u(A)V/?,

we have

(n - k) / 00 1/p' o
hs (k) I Npn(A.)! p/}; (_/;n m[B(z,r)]dz) rk—r=ldy

p(n—k) o(m/P gk—n/
< T = kpln(R) I llp(A)a(n)!/? RE"/P,

Hence

< a7
h+h< kp—(n - a)

”"‘“amrﬁlmppphmmrﬁnhﬁﬂwv
v(k)

#(A)Rx-n/?
n—kp ’
In order for this inequality to achieve its maximum effectiveness, we seek

that value of R for which the right-hand side attains a minimum. An ele-
mentary calculation shows that

R= (H42)™,
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and the value of the right-hand side for this value of R is

p(n—k)a
Y(k)(n — kp)(kp — n + a)

a(n)? MY A) 9 £,

Consequently, from (4.7.2)
tu(A)V9 = tu(A)p(4y)Y97!

p(n — k)a 1/ g1/
< (7(k)(n k) —ara) M °)

(WA V0405 1))

L 1/9' pr1/g
S B k= M (4.7.4)

Expression (4.7.4) states that the Riesz potential operator Iy is of weak
type (p, ¢) whenever p and ¢ are numbers such that

l<p<g<oo, kp<n (4.7.5)

Hence, if (pe, o), (7, ¢) and (py, q1) are pairs of numbers such that (po. gp),
(p1,q1) satisfy (4.7.5) and for 0 < 0 < 1,

1-6 @
1/p= — + —
/v Po "N
=124+ 2

do ”n

then the Marcinkiewicz Interpolation Theorem states that Iy is of type

(p,q), with
Mk * fllgiw < CM”“llfllp,

thus establishing our result. o

4.7.3. Remark. The number a that appears in the statement of Theorem
4.7.2 is equal to n when ¢ = np/(n — kp) = p*. In this case the conditions
of the theorem are satisfied by any measure u that is absolutely continuous
with respect to Lebesgue and that has bounded density. In particular, if
we take u as Lebesgue measure, we can recover Theorem 2.3.6, which is
Sobolev’s inequality for Riesz potentials.

Theorem 4.7.2 also provides an inequality for Riesz potentials restricted
to a lower dimensional submanifold M* of R®. For example, if M* is a com-
pact, smooth A-dimensional submanifold of R", then it is easy to verify that
A-dimensional Hausdorfl measure restricted to M satisfies the condition of
Theorem 4.7.2. That is, if we define u by

u(E) = H(E N M*),



4.7. More Measures in (W™?(Q))* 203

for every Borel set E C R", then there is a constant M such that

u[B(z,r)] < Mr (4.7.6)
for every ball B(z,7) C R". Now let f € LP(R") and consider the potential
u=1Ip*f.

By Theorem 4.7.2 we have

RN
( [w du) < CIfl

where A* = Ap/(n — kp), n — A < kp < n. In other words,

. 1/A°
( [t dH*(z)) <CIfl, (4.1.7)
MX

where C = C(k,p, A, n, M). Note that the constant C depends on M which,
in turn, theory, it is sometimes possible to obtain an equality similar to
(4.7.7) where the constant is independent of the manifold.

Inequality (4.7.7) is valid for Riesz potentials u = Ix * f and thus does
not automatically include Sobolev functions. However, it is immediate that
Theorem 4.7.2 and (4.7.7) apply as well to Sobolev functions u € W¥?(R")
because Theorem 2.6.2 states that u can be represented as

=gk*f

where g is the Bessel kernel, f € LP(R") and || f|l, ~ |{t|lxp. Moreover,
we know from (2.6.3) that there is a constant C such that gx(z) < ClIx(z),
T#0.

To reassure ourselves that the integral on the left-side of (4.7.7) is mean-
ingful, recall from Theorem 3.3.3 that u is defined pointwise everywhere on
R" except possibly for a set A with R ,(A) = 0. Therefore, by Theorem
2.6.16, H™~*P*¢(4) = 0 for every ¢ > 0. By assumption, A > n — kp and
consequently H*(A) = 0. Thus, u is defined H* almost everywhere on M*
which is in accord with inequality (4.7.7).

Also, we observe that if p is a non-negative measure on R™ with compact
support, and otherwise satisfies the conditions of Theorem 4.7.2, then u €
(WkP(2))* whenever  is a bounded extension domain. To see this, let
u € WkP(Q) and let i be an extension of u to R™ such that ||z, <
C||ullx p:- Because & € WEP(R™), we have

G=grsf

where || fllp ~ ||&||x - Hence, by Theorem 4.7.2 and the fact that spt u is

compact,
1/q
/ luldp < C ( / Iul"du) < Cfll,
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= Clll|x.p
< Cllullx pi0-

This establishes the following result.

4.7.4. Theorem. Let } C R" be o bounded extension domain end suppose
i t8 a compactly supported Radon measure on R™ with the property that if
€ > 0, there is a constant M such that

ulB(z, 1)) < Mrmkere,
for all z € R™ and all r >0, where kp < n, p > 1. Then y € (W*P(Q))".

This result obviously is not sharp and thereby invites the question of
determining an optimal condition for 4 to be an element of (W*?(R™))".
By using a different approach, it is possible to find a condition, related
to the one in the theorem above, that provides a characterization of those
Radon measures that are elements of (W*?(R™))".

For this purpose, we need a few preliminaries. If 4 is a Radon measure,
we will use the fractional maximal operator

Mip(z) = sup{rF"u[B(z,7)] : r > 0}.
There is an obvious relationship between the Riesz potential of u and the
fractional maximal operator: Myu(r) < Cly+u(z) for every € R®, where
C = C(k,n). The opposite inequality in integrated form is not so obvious

and is implied by a result due to [MW]. It states that for every 1 < p < o
and 0 < k < n, there exists C = C(k,p, n) such that

1k » llp < CllMaall,. (4.7.8)
The (k,p)-energy of u is defined as
us) = [ (on= s
Since the Bessel kernel is dominated by the Riesz kernel, we have
Explp)<C /R (Ixs u)? dz
- ./I;,.(Ik 1) - (I x )@ Vdz
= / e (T s p)/®=1d; by Fubini’s theorem. (4.7.9)

The expression
s (T + )/ 0D
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is called the non-linear potential of p.

4.7.5. Theorem. Let p > 1 and kp < n. If p is o Radon measure, then
g€ (WEP(R™))* if and only if

B , 1/(P_l)d
/ / (ulr“ _ykp ) Zdu(y) < o (4.7.10)

Proof. In order to avoid technical details involving the behavior at infinity,
we will give a proof for measures y with compact support.

If p is such a measure with g, x u € L¥, then by Fubini's theorem and
with u = g * f we can write

/udu=/gk*fdu

= /gk *u-fdr
< llge * el Il £l
< Cligs * pllp Nulix,ps

which implies that 4 € (W*?(R"))". Conversely, if 4 € (W*P(R"))*, then
the reflexivity of LP implies that gy * u € LP . Therefore p is an element
of (W*?(R"))* if and only if |lgk * y|l,+ < 00, i.e., if and only if the (k,p)-
energy of 4 is finite.

We proceed to find a (sharp) condition on 4 that will ensure the finiteness
of its (k,p)-energy. For each r > 0,

u[l:’fﬂr)l <cC ( / u [ufi fkt)]]"' dtt) v
<C(/ [u[ixkt ] t)w_

Mku(z)<0( e '5’;‘)%’.

Eepln) < C /R (I » ) dz

Thus,

Therefore,

<c f (Men)? dz, by (4.7.8),

<o AR fe
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Now to evaluate the last term, we have

[ wBE Pz = [ B0 B, Dlds
Rn Rn

1/(p—-1)
< /R n (u[B(z,t)J » fa m)du(u)) dz

< / (_/;w)u[B(y»%)l""’“”du(y)) dz
< [ ([ Fevmib. 2000 Vau) ) dz

< [ B, 20|, Hldu(y)
R"
where F(z,y) = xp, and Dy = R* x R" N {(z,y) : |z — y| < t}. Therefore,

ol <€ [T [ B2 NNB G i) T

sef [7(4%2 )W ).

Since p has compact support and finite total mass, it is evident that the
expression on the right side of the above inequality is finite if and only if

o, (425" S

This establishes the sufficiency of condition (4.7.10).
For the proof of necessity, we employ the estimate

gk(z) 2 Clz|¥ e 2" for ze€ R, z#£0 (4.7.11)

{see Section 2.6). As in (4.7.9), we have
Eiplu) = /; (gx * w)? dz = _/; 9k * (gk = 1)/~ Vap.

To estimate the last integral, let f = (g& * 4)*/*~1) and use Lemma 1.5.1
and (4.7.11) to obtain

g xf(2)2C /o (/E ( )f(y)dy) rronear

Clearly, for r > 0,

1/(p-1)
fy) 2 ( /B L —z)du(z))
Y. T
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and therefore,

dr

o+ f(2)2C f(y)du) et

/(p-1) dr
- z)du(z)) dy | r¥~mem ¥ —
B(y r) T

1/(p=-1) dr
2rdu(2)) dy rk-—ne—Zr

B(y r) r

Iy
ze (-
e[ {r
2o

(ulB v, r)])"“’ Y apdr

rn—kp I'

This implies

bz [, [ ()"
>c/n/ (22) ™ it

Ce-7' // ( {ﬂ(y;p )ll(p—” dvrtdu(y)- 0

4.8 Other Inequalities Involving Measures in
(Whey

We now return to the inequality (4.2.1) for another application. It states

that
2] R
lu — L(u)llkpin < C M) D" tt]l e et 13,20

where T € (W™-5P(0))* and L : W™?(Q) — Pr(R") is the associated
projection. L(u) has the form

L(u)= )  T(Pa(D)u)z"

la| <k

where P, i8 a polynomial of degree |a| whose argument is D = (Dy,...,D,).
In Corollary 4.5.2 we found that L(u) = 0 if By, ¢ 5(N) > 0 where

N=0Nn{z:D%(z)=0for all 0 < |o| < k}.

This was proved by the establishing the existence of a measure u > 0
supported in N with u € (W™—k2(Q))*. By taking T = g it clearly follows
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that
Liw)= Y /PQ(D)u du = 0. (4.8.1)

lal<k

Now, if u is taken as any non-negative measure in (W™~*2?(Q))* with the
property that

/D"udu=0 forall 0<|a| Lk,

then (4.8.1) holds. This observation along with Theorem 4.2.1 and Corol-
lary 4.2.3 yield the following result.

4.8.1. Theorem. Let p > 1 and suppose 0 < k < m are inlegers. Let
2 C R" be a bounded extension domain. If i is @ non-negalive measure on
R™ such that u € (W™ 5P(Q))*, u(R™) # 0 and

/D“udp:O forall 0< |a| <k,

then
ltllepse < CHD** ullm— esr)pin

end
lullpesn < CID**  ullm—xk+1)0:0

where C = (k,p,m, u, Q).
In particular, with £ = 0 and m = 1, we have

"“"p';ﬂ < C"D“"p;ﬂ

/udp:O.

From the preceding section we have found that a non-negative measure
s with compact support belongs to (W™~%?(Q))" if, for some ¢ > 0,

if 4 € (W'?(Q))* and

u[B(z, r)] . n
sup{m.zeR,r>0 < 0. (4.8.2)
Consequently, if A is an integer such that A > n— (m — k)p + € and M?* is
a smooth compact manifold of dimension A, then H* | M* is a measure in
(W™—k2(Q))*. As an immediate consequence of Theorem 4.8.1, we have

4.8.2. Corollary. Let A be an integer such that A > n—(m —k)p+ ¢
where p > 1 and ¢ > 0. Suppose M> is a smooth compact submanifold
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of dimension A of R", 2 C R" is an extension domain and suppose u €
W™P(2) has the property that

/ D°udH* =0 forall 0<)a| <k
MAnQ

where H*(M* N Q) #0. Then
lelkpin < CID** tllm—(e+1) 0

and
ltllpe 0 € CUD** il -k +1).000

where C = C(k,p,m, M* Q).

4.9 The Case p=1

The development thus far in this chapter has excluded the case p = 1,
a situation which almost always requires special treatment in LP-theory.
Our objective here is to extend Theorem 4.7.2 to include the case p = 1.
Since the analysis will depend upon estimates involving ||Duf{,, it is not
surprising that the co-area formula (Theorem 2.7.1) will play a critical role.
We begin with the following lemma that serves as a first approximation to
Theorem 4.7.2 in the case p = 1. We will return to this later (in Chapter
5) for a complete development in the setting of BV functions.

4.9.1. Lemma. Let 4 > 0 be a Radon measure on R® and q a number
such that 1< g<n/n—1If

sup{%:zelr, r>0}5M

for some M > 0, then there exists C = C(gq,n) such that

i/q
( / u"du) < CMY||Dy||, (4.9.1)

whenever u € Cg°(R"™).

Proof. First consider ¢ = 1 and refer to Lemma 1.5.1 to conclude that

/udu = /:o u(Ey)dt (4.9.2)

whenever u € C§°(R") is non-negative. Here Ey = {z : u(z) > t}. Because
u is continuous, @E; C u~!(t) for each ¢ > 0; moreover the smoothness
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of u and the Morse-Sard theorem states that u~!(t) is a smooth (n — 1)-
manifold for almost all ¢ > 0. Congequently, Lemma 5.9.3 and Reinark 5.4.2
imply that for all such ¢t there cxists a covering of E¢ by a sequence of balls
B(xi,r;) such that

ir?‘" < CH"Y(OE,) < CH™'({v™"(1)})

where C = C(n). Hence,

< CMH" e~ (O}

where C = C(n). Referring to (4.9.2) and the co-area formula (Theorem

2.7.1) we have
[udu= [~ uiEar
0

o o}
sCM/ HrY({u™()})dt
0
=CM/ |Du| dz.
Rﬂ
If u is not non-negative, write |u| = u* — ™, and apply the preceding

argument to u* and 1~ to establish our result for ¢ = 1.
Now consider ¢ > 1 and let g € LY (u), g > 0. Then, Hélder’s inequality

implies
1/q
_/ gdu < _/ g%dp|  p[B(z,r)]'/e
B(z,r} B(z.r)

< Ml/q"ﬂ"q‘;urn_l

Thus, g4 is a Radon measure which satisfies the conditions of the lernma
for ¢ = 1. Consequently, if « € C§°(R™) we have

[ lulod < CMoNgl [ 1Dtz
R R
for all g € LY (), g > 0. However, by the Riesz Representation theorem,

fullan =00 { [ Tulgdn ol <1, 920}
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and our result is established. a

4.9.2. Remark. The restriction ¢ < nfn —1 in the lemma is not essential.
If g > n/n — 1, the lemma would require a Radon measure y to satisfy

u|B(z,r)) < Mr™

for all z € R", all r > 0, and some m > n. However, there is no non-trivial
Radon measure with this property. In order to see this, let U C R" be a
bounded open set. Choose ¢ > 0 and for each z € U, consider the family
G- of closed balls B(z,7) such that 0 < r < ¢ and B(z,r) C U. Defining

G={B:Be€G,zelU}

we see that G covers U and thus, by Theorem 1.3.1 there is a disjointed
subfamily F C G such that

Ucu{B:BeG}cu{B:Be F}.

Hence, denoting the radius of B; by r;, we have

pU)S Y wBYS MY (5r)™
BeF i=1
< M5™e™ "y
i=1

< M5™e™ U
Since U is bounded and ¢ is arbitrary, it follows that u(U) = 0. o

Our next objective in this section is to extend inequality (4.9.1) by re-
placing {|Dul|, on the right side by ||D%|,. For this purpose it will be
necessary to first establish the following lemma.

4.9.3. Lemma. Let & > 0 be a Radon measure on R*, £ < n,1 < ¢ <
(n—€+1)(n—€) and 77 =1-(¢g~ 1)(n —£)/n. Then there 15 a constant
C such that for all z € R™ and r > 0,

rf =400 * pllyipey < Coup{r~™%[B(z,r)}: z € R*,r > 0}.

Proof. It will suffice to prove the lemma for + = 0. An application of
Minkowski’s inequality for integrals yields

T 1/r
/ / du(y) dx)
B(o.r) \JB(02r) IT — YI" !



212 4. Poincaré Inequalities—A Unified Approach

1/r
= / / ) datw) (4.9.3)
- B(0,2r) B(D,r) |1: —_ yl(ﬂ—l)r

Observe that

/ dzr _ / dx
Bon 1T=yI™ D" S0 nnB.n |7 —yln-T
dr

+ / _ 4z
B(0.r)-B(y.7) !:L‘ - yl("_l)f

The first integral can be estimated by

/ dz < Crn—r(n—l)
B(y,r) |x — yl(n—l)r =

and the second integral is dominated by r"~7("~1) Here we have used the
fact that (n — 1)7 < n. Thus,

/ dz < Crn—r(n—l)’
By [t —y|(n 17 =

and therefore from {4.9.3)

T 1/7
pl—(n+1) / / du(y) dz
B(or) \/B(0:2r) I — y|®~ D)

< Ccrl=™e,(B(0, 2r)). (4.9.4)
If |z| < r and |y| > 2r, then |y| < 2|y — z|. Consequently,

r 1/r
f=(nt1) / / du(y) dx
B(0,r) \Jjy|>2r |1 — y|(»- 1

< C,(z—r)—(q~1)(n—z)/ duly) (4.9.5)
w2 901

Appealing to Lemma 1.5.1, we have

/ ) /w u[B(0, t))t~"dt.
lv 1

|>2r Iyln—-l r

Now define a measure v on R! by v = t(®~89-"dt a1d write

[ uBe.rat= [ uBo,owea,
2

r 2r
< sup {re="auBO, )} [ dv
>0 2r

< Crln-tie—n+1 sup r(t=m)2,(B(0, 7))
r
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This combined with (4.9.5) and (4.9.4) yield the desired result. a
We are now prepared for the main result of this section.

4.9.4. Theorem. Let x > 0 be a Radon measure on R™ and let £ < n,
g> 1. Then

sup{%z_’t—r))]:xeft",r>0}=M<oo,

there exists C = C{q,n) such that

1/q
(/ u"du) < MY D),

whenever u € Cg°(R").

Proof. If £ = n, then for u € C§°(R") and z € R",

u(T) / |D™ul|dy,

from which the result follows.

If 1 = € < n, the result follows from Lemma 4.9.1.

Next, consider the case £ < n, £ > 1 and ¢ > nf(n — 1). Since u €
CS°(R"), it follows that u € Wi~ "/ ~")(R") and therefore u = g¢_; * f,
f € L/ (n= l)(R") with ||f||n/(n 1~ ”u"l-—l,n/(n—l) ~ "Dt_lu”n/(n—l)-
Thus, Theorem 4.7.2 implies

lullgw < CMYED  ullyja-y)-

Since || D*~!||la/n-1 < C||D*u|) by Theorem 2.4.1, our result is established
in this case.

Finally, consider £ < n, £ > 1, and ¢ < n/(n ~ 1). We proceed by
induction on ¢, assuming that the result holds for derivatives of orders up
to and including £ — 1. As in (2.4.5),

|D(Ju(w)I)
/R“ lu(z)1%du(z) < C/n /ﬂ ——fdy\ du(r)

- yn?
< CQ/ |Du| |u|*" 1} * 4 dy (by Fubini’s theorem)

< ClI||u||,,/(,, ol |Dully » u||, (by Holder’s inequality)

where r~1 =1 — (g ~ 1)(n — &)n~ 1. By Sobolev’s inequality,
6l ey < CUD ™" (4.9.6)
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To estimate [||Du|l, « u||, let m be a measure on R™ defined by m =
(I, » 4)"dz and apply the induction hypothesis to obtain

Il 1Duly * gl = | | Dyl f|+;m
< Caup{r®=D="m[B(z,r))!/" : r > 0,z € R"} | D'u|,
= Csup{r V"I * yll,;B(@,r) : 7 > 0,z € R”} || D'yl

This combined with {4.9.6) and Lemma 4.9.3 establishes the proof. m]
Exercises

4.1. Give a proof of Corollary 4.5.3 based on the argument that imme-
diately precedes Section 4.1. You will need the material in Section
2.6.

4.2. The following provides another method that can be used to define
the trace of a Sobolev function u € W'?(f) on the boundary of a
Lipschitz domain §2.

STEP 1. Assume first that u € C'(Q), u > 0. For each z, € Q and
with the (n + 1)-cube centered at zp with side length 2r denoted by
C(zp,r), we may assume (after a suitable rotation and relabeling of
coordinate axes) that there exists r > 0 such that C(zp,r) N30 can
be represented as the graph of Lipschitz function f where the unit
exterior normal v can be expressed as

(lev-"vDer!l)
V1+|Df]?

H"-a.e. on C(zg,7) N IN. With e,4; = (0,...,1) and under the as-
sumption that spt u C C(z¢,r), appeal to the Gauss—-Green theorem
(see Theorem 5.8.7) to conclude that there exists a non-negative con-
stant C, depending only on the Lipschitz constant of f, such that

/ udH"SC/ (uepn41) vdH"
a0 a0
=C/div(ue,.+,)d:c
1]

< C/ \Du|dz.
0

If u assumes both positive and negative values, write |u| = vt + u~

to obtain
/ |u| dH™ < C/ |Du| dzx.
én Y
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4.3.

4.4.

4.5.

STEP 2. With no restriction on sptu, use a partition of unity to
obtain

/ |u] dH™ _<_C/(|u| + |Dul)dz.
an Q
STEP 3. Prove that
/ WiPdH™ < C / ([ul? + |DuP)dz
an 0

by replacing [u| by |u|? in the preceding step.

STEP 4. Now under the assumption that u € W?(Q), refer to Ex-
ercise 2.17 to obtain a sequence of smooth functions u; such that
llux — ufli p.o — O and

/ |ug — uefPdH™ - 0 as &, — co.
a0

The limiting function «* € LP(dN) is called the trace of u.

Prove that u* obtained in the preceding exercise is equivalent to the
trace obtained in Remark 4.4.5.

Prove the following Poincaré-type inequality which provides an esti-
mate of the measure of {{u| > k} in terms of || Dul|,. Let u € WP(B)
where B is an open ball of radius r and suppose g is a measure of
total mass 1 supported in BN {z : u(z) = 0}. Then, if k > 0,

bz s fu() 2 B < Cr [ 1D+ €7 [ (10w 1w,

where R, is the Riesz kernel (see Section 2.6). Hint: Choose z,y € B
with u(y) = 0 and obtain

lu(z)i < Ju{z) — w(z)] + lu(z) — u(y)l
whenever z € B. An application of polar coordinates yields

u(z) < ClIy * (xB - [Dul)(z) + I * (x5 - | Du})(v)]:

The technique in the preceding exercise yields yet another proof of
Corollary 4.5.3 which is outlined as follows. Let u € W-?(B(r)) where
B(r) is a ball of radius r and let N = {z : u(z) = 0}. Let ¢ be a non-
negative smooth function with spt ¢ contained in the ball of radius
2r and such that @ is identically one on B(r). Select z € B(r) in
accordance with the result of Exercise 3.15 and define b = p[u({z)—u].
Then, for each y € R®,

wly)u(z) = p(y)uly) + hly)-
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4.6.

4.7.

4. Poincaré Inequalities—A Unified Approach

Recall from Theorem 2.6.1 that the operator J : LP(R") — W1P(R")
defined in terms of the Bessel kernel g, by J(f) = g1 * f is an isom-
etry. Therefore, with 2 as any non-negative Radon measure p, an
application of Fubini's theorem yields

/hdu=/gl *(J*lh)du=/(.}_'h)-g, * pdz.

Thus, if 4 is concentrated on B(r) N N and satisfies |[g) » pfl,y <1, it
follows that

u[B(r) N N]ju(z)] < T eo(x = u(@))]ll, < Cleu ~ u(@)h.,-

Taking the suprentum over all such y leads to

By p[B(r) N N]ju(z)IP < C [f_" _/m )Iu(r) - u(y)|Pdy

+ / | DulPdy| .
B(2r)
Use Exercise 3.15 to estimate

[ o) - stuipay
B(2r)
in terms of the norm of Du.

Poincaré’s inequality states that if u € W'P(Q) and u vanislics on
a set IV of positive B ;-capacity, then ||ullpe.a < C||Dullp.n, where
C depends on £ and the capacity of N. In the event that rnore is
known about u, this result can be improved. Using the indirect proof
of Section 4.1, prove that if u € W1?(Q) is a harmonic function that
vanishes at some point zp € {2, then there exists C = C(xp, 2) such
that
lullp-.0 < Cll Dull,a-

Lemma 4.2.2 is one of many interpolation results involving different
orders of derivatives of & given function. In this and the next exercise,
we will establish another one that has many useful applications. Prove
the following: Let g be a measurable function on R", and let 0 < a <
n,0 < e < 1. Then

[ae(9)(z)] < C(Myg(2))'™* - (La(lg])(@))",

where Mg is the maximal function of g. Refer to the proof of Theorem
2.8.4 and choose § in(2.8.4) as

so = lallg(=)
Mg(x)
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4.8.

4.9.

4.10.

4.11.

Let f = 1,(g), g 2 0. Prove the interpolation inequality
1D £lle < CUFIEY N £ e07e

where k is any multi-index with 0 < |k| < a, 1/r = |k|/ap+(1-]k|)/s,
and p < s < 00. Use the previous exercise to prove

Hae(9)ll- < Cligh~* M allghllz

where 1 < p < 00, 1/r = (1 —¢€)/p+¢/s, p < 8 < 0o. Then let
f = I,(g) and observe that

|D* f(2)] € La—k(g)(x).

Prove the following as a consequence of Theorem 4.2.1. Let 2 C R"
be a bounded, connected, extension domain. Suppose v € L¥ (1),
n # 0, p > 1. Prove that there exists C = C(p, v, ) such that

Hullpia < CllDullpa
whenever u € W'?(Q), [ uvdr =0.

When Q C R**! is a Lipschitz domain, Exercise 4.2 shows one way
of defining the trace, u* € LP(90), when u € W!?(2), p > 1. Note
that

/ [u*|PdH" < C / (|uf? + | DulP)dz.
on (1]

Let v € LP (3Q), v # 0. Prove that there exists C = C(p, v, ) such
that
lullpi2 < CliDullpa

whenever u € W1?(Q), [y u'v*dH™ = 0.

At the beginning of this chapter an indirect proof of the following
Poincaré inequality is given: If u € W'?(Q2) and u = 0 on a set of
positive measure S, then Jul|,.0 < C||Duljp.q. Show that essentially
the same argument will establish the same conclusion if it is only
assumed that u = 0 on a set of positive B, ,-capacity.

Historical Notes

4.1. Lemmas 4.1.3 and 4.1.4 provide the main idea that serves as the key-
stone for the developments in this chapter. They are due to Norman Meyers
[ME4] and many other results in this chapter, such as those in Sections 2,
5, and 6 are taken from this paper. It should be emphasized that Lemma
4.1.3 is an abstract version of the usual indirect proof of the basic Poincaré

inequalities.
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4.4. In Remark 4.4.5 an approach to the subject of trace theory on the
boundary is indicated which is based on the material in Chapter 3 con-
cerning the property of Sobolev functions being defined everywhere in the
complement of small exceptional sets. Another approach to this subject is
presented in [LM].

In the proof of Theorem 4.4.6 it is not necessary to use the Morse-Sard
theorem if we are willing to use the full strength of the “Boxing Inequality”
[GUJ and not the version reflected in Lemma 5.9.3. The inequality in [GU]}
states that there is a constant C = C(n) such that any compact set K C R"
can be covered by a sequence of balls { B(r;)} such that

Y 7t <CH(BK).

i=1

This inequality could be used to establish (4.4.6) if K is taken as E, and
by observing that 8E, C v~!(t) since v is continuous.

4.5. The proof of the Poincaré inequality here is, of course, bascd on the
material in the previous sections, particularly Theorem 4.2.1. This proof is
contained in (ME4]. There are several other proofs of the Poincaré inequal-
ity including the one in [P] which is especially interesting.

4.7. All of the Sobolev-type inequalities discussed thus far are in terms
of inequalities defined on R™. There also are similar inequalities that hold
for functions defined on submanifolds of R"®. For example, in minimal sur-
face theory, Sobolev inequalities are known to hold for functions defined on
submanifolds where the inequality includes a term involving the mean cur-
vature of the submanifold, cf. [MS). In case of 2 minimal surface, the mean
curvature is 0. Theorem 4.7.2 is a result of the same ilk in that the left
side involves integration with respect to a measure gz which can be taken
as a suitable Hausdorff measure restricted to some submanifold. However,
it is different in the respect that the right side of the inequality involves
the LP-norm of the gradient relative to Lebesgue measure on R™ and not
the norm relative to Hausdorfl measure restricted to the submanifold. This
interesting result was proved by David Adams [AD2]. Theorem 4.7.4 states
that measures with suitable growth over all balls are elements of the dual
of WkP(R™). Thus, Theorem 4.7.2 is closely related to (4.2.1).

Theorem 4.7.5 which yields a characterization of those measures in the
dual of WkP(R") is due to Hedberg and Wolfl [HW) although the proof we
give is adapted from [AD7].

4.9. Inequality (4.9.1) is due to Meyers-Ziemer [MZ) in case ¢ = 1. The
proof for the case 1 < ¢ < n/(n — 1) is taken from [MA3). This inequality
is also established in Chapter 5 in the setting of BV functions, cf. Theorem
5.12.5. Corollary 4.1.5 is an observation that was cominunicated to the
author by David Adams. This result when applied to Theorem 4.5.1 yields



Historical Notes 219

more information if Lemma 4.1.4 were used. This is an interesting example
of the critical role played by the sharpness of a constant, in this instance, the
exponent of B, _x ,(A) in Theorem 4.5.1. Indeed, in the work of Hedberg
[HEZ2], it was essential that the best exponent appear. He gave a different
proof of Theorem 4.5.1.
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Functions of Bounded
Variation

A function of bounded variation of one variable can be characterized as
an integrable function whose derivative in the sense of distributions is a
signed measure with finite total variation. This chapter is directed to the
multivariate analog of these functions, namely the class of L' functions
whose partial derivatives are measures in the sense of distributions. Just
as absolutely continuous functions form a subclass of BV functions, so it
is that Sobolev functions are contained within the class of BV functions of
several variables. While functions of bounded variation of one variable have
a relatively simple structure that is easy to expose, the multivariate theory
produces a rich and beautiful structure that draws heavily from geometric
measure theory. An interesting and important aspect of the theory is the
analysis of sets whose characteristic functions are BV (called sets of finite
perimeter). These sets have applications in a variety of settings because of
their generality and utility. For example, they include the class of Lipschitz
domains and the fact that the Gauss—Green theorem is valid for them
underscores their usefulness. One of our main objectives is to cstablish
Poincaré-type inequalities for functions of bounded variation in a context
similar to that developed in Chapter 4 for Sobolev functions. This will
require an analysis of the structure of BV functions including the notion of
trace on the boundary of an open set.

5.1 Definitions

5.1.1. Definition. A function u € L'(}) whose partial derivatives in the
sense of distributions are measures with finite total variation in 2 is called
a function of bounded variation. The class of all such functions will be
denoted by BV (Q). Thus u € BV (Q) if and only if there are Radon (signed
IMeasures) measures uy, 42, - . ., g defined in © such that fori =1,2,...,n,
| Dl () < oc and

/uD,quxz*/wdu.- (5.1.1)

for all p € C5°(Q).
The gradient of u will therefore be a vector valued measure with finite
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total variation:
| Dull = sup{/ udivods: v = (v,...,v) € C( R™),
0

lv(z)| < 1 for T € Q} < o0. (5.1.2)

The divergence of a vector field v is denoted by divev and is defined by
divv = Y}, D;v;. Observe that in (5.1.1) and (5.1.2), the space C5°(f)
may be replaced by C;(£2). The space BV () is endowed with the norm

lullav = llullye + || Dul. (5.1.3)

If u € BV(Q) the total variation ||Du|| may be regarded as a measure,
for if f is a non-negative real-valued continuous function with compact
support §2, define

N1Dull(f) = sup{-/;2 udivvdr : v = (vy,...,0,) € C°(§3; R"),
lu(z)] < f(z) for z € ). (5.1.4)

5.1.2. Remark. In order to see that || Dul| as defined by (5.1.4) is in fact
a measure, an appeal to the Riesz Representation Theorem shows it is
sufficient to prove that [|Du|| is a positive linear functional on Co(Q2) which
is continuous under monotone convergence. That is, if {f;} i8 a sequence
of non-negative functions in Cp(f2) such that f; T g for g € Cp(R2), then
[IDuli(£;) — || Dull(g), cf. [F4, Theorem 2.5.5). In order to prove that || Dul|
has these properties, let 4 = Du and refer to (5.1.1) to see that u satisfies

/udivcpdz: —/gp-du

where ¢ € Cg°(§Y; R"). Therefore, we may write (5.1.4) as
1Du||(f) = sup{/‘;v ~dy:v={vy,...,9,) € Co(§2; R"™)

w(z)| £ f(x) for z € Q}. (5.1.5)

To show that ||Dul| is additive, let f,g € Cp(§2) be non-negative functions
and suppose v € Cp(f2, R™) is such that |u| < f+g¢. Let h = inf{f, |v|} and
define

v(z)

[v(z)|
0 |v(z)} = 0.

h(z)

lu(x)] #0

w(z) =
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It is easy to verify that w € Co(Q?) and |v — w| = |v| — h < g. Therefore,
since |w| =h < f,

/‘;v-du=/nw-du+/n(v—w)-dp

< IiDu||(f) + 1 Dul|(g)-

This implies that ||Dulj(f + ¢) < ||[Du|l(f) + ||Dull(g). The opposite in-
equality is obvious and consequently it follows that ||Du|| is additive. It
is clearly positively homogeneous. It remains to show that it is contin-
uous under monotone convergence. For this purpose, let f; T g and let
v € Cp(f2, R") be such that |v| < g. Also, define h; = inf{f;, |v|} and

o)
w.-(x)={ h )u @ PENFo
jo(e)] = 0.

Note that w; € Co(R2), |w;| = h; < fi, and that j[v —w;| = |v] — h, | 0 as
i — oo. Since |v—w;| = |v|—h; < 2|v|, Lebesgue’s Dominated Convergence
Theorem implies

$—00

/vdu Du-v=lim Du-w; < lxm | Dull (k).

By taking the supremum of the left side over all such v it follows that
|1Dull(g) < limi_oo ||Dull(hi). Since h; < g for all ¢ = 1,2,..., we have
|| Dull(g) = lim; .o || Dul|(hi). This establishes that || Du|} is a non-negative
Radon measure on 2.

We know that the space of absolutely continuous u with v’ € L'(R!)
is contained within BV (R!). Analogously, in R® we have that a Sobolev
function is also BV. That is, W'*(Q) C BV(R), for if u € W1!(Q), then

n
udivvd.'z:—/ D,uvdr
A >

and the gradient of u has finite total variation with

1Dul|() = /n | Duldz.

5.2 Elementary Properties of BV Functions
In this section we establish a few results concerning convergence propertics
of BV functions. We begin with the following which is almost nninediate

from definitions, but yet extremely useful.

5.2.1. Theorem. Let  C R™ be an open set and u; € BV () a sequence
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of functions that converge to a function u in L}, (Q). Then

lim inf (| Dw;[|(U) 2 | Dul|(U)
for every open set U C Q.

Proof. Let v be a vector field such that v € C§°(U; R*) and |v(z)| < 1 for
r € U. Then

/ udivedz = lim [ wudivvdz < liminf || Du,||(V).
U 31— 00

1— o0 U

The result follows by taking the supremum over all such v. a

5.2.2. Remark. Note that the above result does not assert that the limit
function u is an element of BV (). However, if u € L1(R2) and we assume
that

sup{|Duill(©) 1 i = 1,2,....} < oo

then u € BV (§2). Indeed, if ¢ € C§°(R2), and Dy; is any partial derivative
of u;, then

lim ¢ Dugdz = — lim / u;Dpdr = / uDypdzr
1] 2 4

t— oo t—00
/ uDypdz
0

Since C§°(R2) is dense in the space of continuous functions with compact
support, we have that

and therefore

< sup || liminf || Dy, ||(2?) < oco.
$— 00

Du(p) = _./nuDWdz

is a bounded functional on Co(2). That is, Du is a measure on §.

Theorem 5.2.1 established the lower semicontinuity of the total variation
of the gradient measure relative to convergence in L . We now will prove
an elementary result that provides upper semicontinuity.

5.2.3. Theorem. Let {u;} € BV(Q) be a sequence such that u; — u in
LL,o(%2) and
Jim |Du,l(%) = || Dull(5).

Then, _ _
limsup || Du||(U N Q) < | Dul|(U N Q)

1—00
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whenever U 13 an open subset of Q.

Proof. Since V = Q — U is open, it follows from Theorem 5.2.1 that
IDu)(V) < liminf | Dus|(U)
|Dul(V) < limin [Dug(V).
But,
IDuI@ N2) +1Dull(V) = |Dull(®) = lim || Dusl|()
> limsup 1Dw(UNQ) + li‘@(igf [|Pufl(V)

t—00

> limsup I Duil (T N Q) + | Dul|(V). o

1 —o00

In view of the last result and Theorem 5.2.1, the following is immediate.

5.2.4. Corollary. If {u;} € BV(Q) is a sequence such that u; — u n
L) .(R), lim; o0 || Dus||(2) = || Dull(Q), and ||Dul|(dU) = 0, where U is an
open subset of 1, then

lira || D [[(U) = I Dw(D).

5.3 Regularization of BV Functions

Here we collect some results that employ the technique of regularization
introduced in Section 1.6. Thus, for each € > 0, . is the regularizing kernel
and u, = uxp,. From the proof of Theorem 1.6.1, it follows that if U CC {2,
and u € L} _(Q), then {|u.|,,;u < JJulli,a for all sufficiently small € > 0. In
this sense, regularization does not increase the norm. We begin by showing

that a similar statement is valid when the BV norm is considered.
5.3.1. Theorem. Suppose U is an open set wath U C Q and let u € BV ().
Then, for all sufficiently small £ > 0,

luellBvvy < ||“"BV(n)-

Proof. In view of Theorem 5.2.1, it suffices to show that ||Du {(U) <
(| Du)|(Q) for all sufficiently small ¢ > 0. Select v € Cj (U, R™) with |v| < 1.
Choose 1 > 0 such that {z : d(z,U) < n} C Q. Note that |v] < 1 and
sptve C {z : d(z,U) < n} for all small ¢ > 0. For all such € > 0, Fubini’s
Theorem yields

/ucdivvd.'z:/u,divvdzz/u(divv)cdr
v 0 Q

- / udiveeds < || Dull(R).
Y]
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The result follows by taking the supremum over all such v. a

5.3.2. Proposition. Let u € BV (2) and f € C3°(R). Then fu € BV(Q?)
and D(fu) = Dfu+ fDu in the sense of distributions.

Proof. Let U be an open set such that spt f c U C U C . Then,
u.f € C(U) with D(fu,) = (Df)u, + f Du, at all points in U. However,
Jlue—u|l1.v — 0 as e — 0. (Of course, we consider only those ¢ > 0 for which
u () is defined for € U.) In particular, when considered as distributions,
ue — u. That is, u, — u in @'(U) and therefore Du, — Du in Z'(U), (see
Section 1.7). Since f € C§°(U), it follows that fDu, — fDu in Z'(U).
Clearly, (Df)ue — (Df)u in @'(U). Finally, with the observation that
fu, — fu in @’'(U) and therefore that D(fu.) — D(fu) in Z'(U), the
conclusion readily follows.

We now proceed to use the technique of regularization to show that
BV functions can be approximated by sinooth functions and thus obtain a
result somewhat analogous to Theorem 2.3.2 which states that C°(Q)N{u :
llullk p:p < 0o} is dense in Wk®(£2). Of course, it is not possible to obtain
a strict analog of this result for BV functions because a sequence {u;} €
C(Q) that is fundamental in the BV norm will converge to a function in
W1(Q). However, we obtain the following approximation result.

5.3.3. Theorem. Let u € BV(RQ). Then there ezists a sequence {u,} €
C(R) such that

lim | |u; —uldz =0
i—o00 0

and
fim 1Du () = | Dul(€).

Proof. In view of Theorem 5.2.1, it suffices to show that for every £ > 0,
there exists a function v, € C°(2) such that

/ lu—veldz <e and [ Dull(®) < ||Dul|(Q) +e. (5.3.1)
Q

Proceeding as in Theorem 2.3.2, let §}; be subdomains of {1 such that
; CC Uy and U2 Q; = Q. Since {|Dul} is a measure we may assume,
by renumbering if necessary, that ||Dulj(2 — Q) < €. Let Up = @, and
Ui=Q - Qi fori=1,2,.... By Lemma 2.3.1, there is a partition of
unity subordinate to the covering Ui = Q41 — Qy_1, i = 0,1,.... Thus,
there exist functions f; such that f, € CP(U;),0< fi < l,and Y02, fi =1
on (2. Let ¢, be a regularizer as discussed at the beginning of this section.
Then, for each i there exists €; > 0 such that

spt((fiu)e,) C Ui, (5.3.2)
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/ [(fiw)e, = fivldz < 27 0FY (5.3.3)
q
/ (uDf,)e, — uDf,}Jdz < €27+, (5.3.4)
o
Define o
Ve = Z(“fi)c;-
=0
Clearly, ve € C°(92) and u = }_;2, ufi. Therefore, from (5.3.3)
e - ula < > [ s, - hde <. (5.3.5)

Reference to Proposition 5.3.2 Jeads to

Dy, =Y (fiDu)., + 3 _(uDf).,

=0 =0

= Z(f,-Du)e, + Z[("Dfi)fi - qui]'
=0

=0

Here we have used the fact that £ Df, = 0 on {2. Therefore,

JALDEE > [ 1080w jdz + > [ 1D £, - uDflds.

The last term is less than ¢ by (5.3.4). In order to estimate the first term,
let 3 € C3° (% R™) with sup|¢| < 1. Then, with @ * ¥ = ¥,

'/cpc ¥ (fiDu) -ydz| = ]/w,_.f.-d(Du) by Fubini's theorem,

- ‘ / wdiv(ge fi)dz
A

since spt ¥ f; C U; and |y f;| < 1. Taking the supremum over all such ¥
yields

[n (/i Du)eldz < [Dul(Ts), i=0.1,... .

Therefore, since each £ € N belongs to at most two of the sets Uj,

/ [Dy|dz < i [[Dul|(Us) + €
R =0

< | Duli() + Y Dul|(Us) +¢
1=1

< |Dull(R) + 2] Dull(R ~ Do) + ¢
< | Dull(Q) + 3e.
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Since € > 0 is arbitrary, this along with (5.3.5) establishes (5.3.1). O

5.3.4. Corollary. Let 2 C R" be a bounded extension domain for W' (Q).
Then BV (Q) N {u: ||lul|gv < 1} is compact in L1(Q).

Proof. Let u; € BV (1) be a sequence of functions with the property that
fluillev < 1. By Theorem 5.3.3 there exist functions v; € C*°(£2) such that

/ |lvi — ugldz <i™! and / |Dvi|dz < 2.
0 o

Thus, the sequence {||vi]|;,1,0} is bounded. Then, by the Rellich-Kondra-
chov conipactness theorem (Theorem 2.5.1), there is a subsequence of {v,}
that converges to a function v in L1(f2). Referring to Remark 5.2.2, we
obtain that v € BV (). 0

In Theorem 2.1.4 we found that u € WP if and only if u € L? and u has
a representative that is absolutely continuous on almost all line segments
parallel to the coordinate axes and whose partial derivatives belong to L.
We will show that a similar result holds for BV functions.

Since we are concerned with functions for which changes on sets of mea-
sure zero have no effect, it will be necessary to replace the usual notion of
variation of a function by essential variation. If u is defined on the interval
[a, b}, the essential variation of u on [a,b] is defined as

k
ess V2(u) = sup {Z lu(t;) — u(ti—l)'}

where the supremum is taken over all finite partitionsa < to < t,...4x < b
such that each ¢; is a point of approximate contimuity of u. (See Remarks
3.3.5and 4.4.5 for discussions relating to approximate continuity.) From Ex-
ercise 5.1, we see that 4 € BV (a,b) if and only if ess V2(u) < co. Moreover,
ess V2(u) = ||Dul|[(a, b)]. We will use this fact in the following theorem. As
in Theorem 2.1.4, if 1 < i < n, we write £ = (Z,z;) where £ € R"~! and
we define u,(z,) = u(f, z;). Note that u; depends on the choice of £ but for
simplicity, this dependence will not be exhibited in the notation. Also, we
consider rectangular cells R of the form R = (a1, ) x (a2, d2) % - -x(an,bn).

5.3.5. Theorem. Let u € L} (R™). Then u € BV,,.(R") if and only if

loc
/_ ess ch’_‘(u,-)d:i < oo
R

for each rectangular cell RCR" ' eachi=12,...,n, and a; < b;.

Proof. Assume first that 4 € BVioc(R"). For 1 < i < n it will be shown
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that
/_ ess V:_' (u)dZ < o0
R

for each rectangular cell R C R"~! and a; < b;. For notational simplicity,
we will drop the dependence on i and take R of the form R = R x [a, B].
Now consider the mollified function u, = @, * u and note that

/|u,—u|d:z—00 as £—0
R

and
limsup/ |Duldr < oo (Theorem 5.3.1).
R

e—0

Consequently, with u, ,(z;) = u(%, z;), it follows that u¢; — w; in L'(a,b)
for H* 1-a.e. Z € R. Theorem 5.2.1 implies that iminfe_o || Du, ;|/{(a, b)] >
|| Duil|{(a, b)} and therefore, from Exercise 5.1,

ess Va"(u.-) < liin i(n;)fess Va"(u,,,-)
for H*~l.a.e. € R. Fatou's lemma yields
/ ess V2 (us)dH™\(3) < liminf [ essV2(ue,)dH ' (3)
i e~ Jg
=liminf { |D;u|dz
e—0 R

< limsup/ |Du.|dzr < oc.
R

e—0

For the other half of the theorem, let u € L}, (R™) and assume
/_ ess V2 (u, )dH™!(z) < o0
R

foreach 1 < i< n,a < b and each rectangular cell R C R* . Choose
¢ € C§°(R), lp| £ 1, where R = R x (a,b) and employ Exercise 5.1 to
obtain

/ uDspdz < / ess V2(u;)dH™ "} (%) < oo

This shows that the partial derivatives of u are totally finite measures over
R and therefore that u € BV, (R"). 0

5.4 Sets of Finite Perimeter

The Gauss—Green theorem is one of the fundamental results of analysis
and although its proof is well understood for smoothly bounded domains
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or even domains with piece-wise smooth boundary, the formulation of the
result in its ultimate generality requires the notion of an exterior normal to
a set with no smoothness properties in the classical sense. In this section,
we introduce a large class of subsets of R for which the Gauss-Green
theorem holds. These sets are called sets of finite perimeter and it will be
shown that they possess an exterior normal which is defined in the same
spirit as Lebesgue points of LP-derivatives. The Gauss—Green theorem in
the setting of sets of finite perimeter will be proved in Section 5.8.

5.4.1. Definition. A Borel set E C R" is said to have finite pertmeter
in an open set (2 provided that the characteristic function of E, Xg, is a
function of bounded variation in Q. Thus, the partial derivatives of Xg are
Radon measures in 2 and the perimeter of E in Q is defined as

P(E, ) = || DXgll(%).

A set E is said to be of locally finite perimeter if P(E,Q) < oo for every
bounded open set Q. If E is of finite perimeter in R", it is simply called a
set of finite perimeter. From (5.1.4), it follows that

P(E,Q) =Sup{/ divvdz:v=(v,...,u,) € CF(Q,R"),|v(z)] < l}.
E
(5.4.1)

5.4.2. Remark. We will see later that sets with minimally smooth bound-
aries, say Lipschitz domains, are of finite perimeter. In case E is a bounded
open set with C2? boundary, by a simple application of the Gauss -Green
theorem it is easy to see that E is of finite perimeter. For if v € C§°(12; R™)
with [|v]lc < 1, then

/divvd:z:/ v-vdH" ' < H" Y(2NJE) < o0
E (25

where y(z) is the unit exterior normal to E at z. Therefore, by (5.4.1),
P(E,N) < oo whenever § is an open set.

Moreover, it is clear that P(E, Q) = H*~' (RN JE). Indeed, since E is a
C?-domain, there is an open set, U, containing 9E such that d(z) = d(z, E)
is C! on U — 8E and Dd(z) = (z — £(z))/d(x) where £(z) is the unique
point in 3F that is nearest to z. Therefore, the unit exterior normal v to
E has an extension &# € CJ{R"™) such that |#| < 1. Hence, if v = g with
n € C3°(), we have,

/divvd:z:/divni/d:r:/ ndH" L.
E E E
This implies

P(E,Q) > sup{/ ndH™" : € CE(Q), Inl < 1}
aE
= H" (9N SE).
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Intuitively, the measure DXg is nothing more than surface measure
(H™~'-measure) restricted to the boundary of E, at least if E is a sinoothly
bounded set. One of the main results of this chapter is to show that this
idea still remains valid if E is a set of finite perimeter. Of course, since we
are in the setting of measure theory, the topological boundary of E is no
longer the appropriate object of study. Rather, it will be seen that a subset
of the topological boundary, defined in terms of metric density, will carry
the measure DXg.

In Theorem 2.7.4 we observed that the isoperimetric inequality lead to
the Sobolev inequality via the co-area formula. Conversely, in Remark
2.7.5 we indicated that the Sobolev inequality can be used to establish
the isoperimetric inequality. We now return to this idea and place it in
the appropriate context of sets of finite perimeter. We will establish the
classical isoperimetric inequality for sets of finite perimeter and also a local
version, called the relative isoperimetric inequality.

5.4.3. Theorem. Let E C R™ be a bounded set of finite perimeter. Then
there is a constant C = C(n) such that

| B[~/ < C||Dxg||(R™) = CP(E). (5.4.2)
Moreover, for each ball B(r) C R",

min {|B(r) N E|,|B(r) - E)[}\* /" < C||Dxg||(B(r)) = CP(E, B(r)).)
(5.4.3

Proof. The inequality (5.4.2) is a special case of the Sobolev inequality for
BV functions since Xg is BV. We will give a general treatment of Sobolev-
type inequalities in Section 11. If u € BV (R"), refer to Theorem 5.3.3 to
find functions u; € C$°(R™) such that

lm [ |y, —u|dz =0,
1—00

lim | DuJ|(R") = | Dull(R").
By passing to a subsequence, we may assume that u; — u a.e. Then, by
Fatou’s lemma and Sobolev's inequality (Theorem 2.4.1),
“u“n/(n—]) < li"_f_log’lf ||“i||n/(n-—1)
< lim C||Dw,||(R")
31— 00
< C||Dul|(R™).
To prove the relative igoperimetric inequality (5.4.3), a similar argument

along with Poincaré’s inequality for smooth functions {Theorem 4.4.2),

yields
[l — ﬁ(")“ﬂ/(n—l);E(r) < C||Du||(B(r))
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where G(r f-B(r u(z)dz and B(r) is any ball in R". Now let u = Xg and
obtain

u(z) — 7(r)| Vg = wn/(n—n i
/B(r)l(:r) (r)] dz (‘B(T)I ) By B

|B(r)n E|\™Y
+( B ) |B(r) - EI.

If|B(r) — E| > |B(r) N E|, then (|B(r) - E{)/(|B(r}]) 2 § and

ClIDXgl|(B(r)) = CliDuf\(B(r)) 2 llu = B(r)in/(n-1):8(r)
> (IB(T) )lB( nEl(n 1)/n

|B(r)|
- ([B(r NE| |B(r) - EI)(“ bie
2 [B(r)l " |B(r)i
A similar argument treats the case |B(r) M E| > |B(r) — E|. n]

We now return to the topic of the co-arca formula which was proved
in Theorem 2.7.1 for smooth functions. Simple examples show that (2.7.1)
cannot hold for BV functions (consider a step function). However, a version
is valid if the perimeters of level sets are employed. In the following, we let

E =00 {z:u(z) >t}
5.4.4. Theorem. Let } C R® be open and u € BV(Q). Then

1wl = [ IDXk, I(@)at

Moreover, if u € L'(Q) and E, has finite perimeter in Q for almost all ¢
with
[ 1pxe @)t < o0,
R!

then u € BV (Q).

Proof. We will first proof the second assertion of the theorem. For each
t € R!, define a function f, : R® — R' by

f, = XEg, if t>0
t7 | —xpn-g, if t<0.

Thus,
u(x) =/ filz)dt, =z € R".
Rl
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Now consider a test function v € C$°(€), such that sup|p| < 1. Then
[ sa@iz= [ [ e
n R JR!
=/ fu(z)p(z)dzdt. (5.4.4)
R JR"

Now (5.4.4) remains valid if ¢ is replaced by any one of its first partial
derivatives. Also, it is not difficult to sce that the mapping t — | DXg,[|(R?)
is measurable. Therefore, if ¢ is taken as p € C§°((}; R™) with snple| < 1,
we have

Du(p) = - ./m u-divedz = —/;t‘ o fe(z)div p(z)dzdt

< /R D)t < /ﬂ DX, (@)t < o (5.4.5)

However, the sup of (5.4.5) over all such ¢ equals [|Dul|(R2), which estab-
lishes the second assertion.

In order to prove the opposite inequality under the assumption that
u € BV(Q), let {P;} be a sequence of polyhedral regions invading 2 and
Ly : P, -+ R! piecewise linear maps such that

lim | |Li—uldz=0 (5.4.6)
k— 00 Py
and
lim / |DL|dz = | Dul|(R), (5.4.7)
k—o0 P:

(see Exercise 5.2). Let
Ef = P.0 {z: Li(z) > t},
Xf = Xgs.
From (5.4.6) it follows that there is a countable set S C R® such that for
eachj=12,...
lim [ |X/(z)— x¥(z)|dz =0 (5.4.8)
k— o0 F)

whenever ¢ & S. Thus, for t € S, and ¢ > 0, refer to (5.4.1) to find
@ € C§°(82; R™) such that |¢] < 1 and

IDx g, [[($2) -/ divedz < % (5.4.9)

£4

Let M = {,. |divp|dz and choose j such that spt ¢ C P;. Choose ky > j
such that for & > kp,

13
|Xe - X¥|dz < .
P, t 2' oM
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For k > ko,

/divwdx—/ divedsr
E, E*

< M/ =Xtz <& (5.4.10)
P, 2
Therefore, from (5.4.9) and (5.4.10)

DX, () < / divpdz +¢
El
< IDXgsl(®) +e.

Thus, fort € S,
1DX£, () < lim nf | DX g2 )(Q).

Therefore, Fatou's leinma implies

/ (DX, ||()dt < liminf / | DX g [1(2)dt
R k—oo Jpi ‘
< liminf H YL Y ()N Q)dt  (by Remark 5.4.2)
Rl

<liminf [ |DLdz (by (2.7.1))
e Jp,
= |Dull(@) (by (5.4.7)). o

5.5 The Generalized Exterior Normal

In Remark 5.4.2 we observed that a smoothly bounded set has finite perime-
ter. We now begin the investigation of the converse by determining the reg-
ularity properties possessed by the boundary of a set of finite perimeter.

5.5.1. Definition. Let E be of locally finite perimeter. The reduced bound-
ary of E, 9~ E, consists of all points £ € R™ for which the following hold:

(i) |Dxgli{B(z,r)] >0 for all r > 0,

(i) ¥ v.(z) = —DXxg[B(z,r))/IDXxgl{[B(z,7)], then the limit v(z) =
lim, .o vy (7) exists with |v(z)| = 1.

v(z) is called the generalized exterior normal to E at z. We will employ
the notation v(z) = v(z, E) in case there is a possibility of ambiguity. The
notation @~ is used in 3~ E to indicate that the normal to E is pointing in
the direction opposite to the gradient.

Observe that v(z, E) is essentially the Radon-Nikodym derivative of
Dxg with respect to [|[DXgll. To see this, let p(z) be the vector-valued
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function defined by

DXE[B(I, ]
Plz) = = I O£ llBlz, )]’

From the theory of differentiatiou of measures in Chapter 1 (see Remark
1.3.9) this implies that p is the Radon- Nikodym derivative of DXg with
respect to || DXg|| and that

DXe(B) = - [ p(a)IDxs(2)
for all Borel sets B C R™. Moreover,
/ divvdr = - /v(x) - p(z)d||Dxg||
E

whenever v € C}(R"; R™). Consequently, by (5.1.2), |p(z)| = 1 for || DXg]-
a.e. € R" and therefore, p(z) = v(z, E) for ||DXxg|-a.e. £ € R™. Thus,
we have

Dxg(B) = - / v(z, E)|DXzl|(z),
BNO—-F
\DXg||(R" - 8" E) =

The pext lemma is a preliminary versiou of the Gauss-Green theorem.

5.5.2. Lemma. Suppose E is of locally finite perimeter and let f € C°(R™).
Then, for almost all r > 0,

/ D.fdz = - / faoxe) + [ Fw)wily, B()EH™ (1)
ENB(r) B(r) EN8(B(r))

where B(r) = B(z,r) and v;(y, B(r)) is the i*" component of the unit
ezterior normal.

Proof. To simplify notation, we will take z = 0. From Proposition 5.3.2,
we have that fxg € BV(f1). Let S be the countable set of » such that
IDi(fxe)[O(B(r))] # 0. Select r € S and let 5, be a piecewise linear
function on (0,00) such that 5. = 1 on (0,7] and n, = 0 on (r + £, 00).
Since D;[fXg) is a measure, we have

/ f(z)Xe(z)Dilne (j2)ldz = — / ne(l=)d( Dl x5]) (=)
Rn R"
)

- / ne(|=d(DlfXE]) ().
B(r+¢)—B(r}



5.5. The Generalized Exterior Normal 235

Therefore
1 I
_EL(r+c)—ﬂ(r)f(z)XE(I)mdz
= —Di(fXg)B(r)] - /E o, DAL @)

Since r € S and |p| < 1, the integral on the right converges to 0 as € | 0.
By the co-area formula (Theorem 2.7.3), the integral on the left can be
expressed as

1 T
1 % e
£ -/B(r+t)—B(r)f(I)XE(z)|zl

1 r+e Ts
= —-/ / f(z)=dH" ! (z)dt.
€ Je EN8(B(r)) |z}

Therefore

—1/ f(2)Xp(z) 2dz — ~ f(z) = dH™Y(z)
(r+¢)-B(r) || ENB(B(r)) |z}

which implies
T n—
[ @)z e) = Dsxe)Be)
EN8(B(r)) ||
for almost all r > 0. Moreover, from Proposition 5.3.2,
Di[fxe)(B(r)) = (Dif)xg(B(r)) + fDixg(B(r))
2/ D; f(z)dz + fd(Dixg). .|
ENB(r) B(r)
5.5.3. Corollary. If E has finite perimeter tn Q, then for almost all r > 0
with B(r) C Q,
P(E N B(r),Q) < P(E, B(r)) + H*"'[EN3(B(r))]

Proof. Choose v € C§°(£2, R®) with |v| < 1 and let r > 0 be a number for
which the preceding lemma holds. Then

/ divvdz=—/ v-d(DXE)
ENB(r) B(r)
+ / w(z) - v(z, B(r))dH"™\(z)
EN8(B(r))
< IDxg|(B(r)) + H*'[E N 8(B(r))}.
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Taking the supremum over all such v establishes the result. a

Remark. Equality actually holds in the above corollary, but this is not
needed in the immediate sequel.

The next lemma will be needed later when we begin to investigate boun-
ary regularity of sets of finite perimeter.

5.5.4. Lemma. Let E be a set with locally finite perimeter. Then, for each
z € 37 E, there is a positive constant C = C(n) such that for all sufficiently
small r > 0,

r"|B(z,r)NE}| > C, (5.5.1)
r~"|B(z,r) - E| > C, (5.5.2)
C < r' || Dxgl\(B(z, 7)) < C7L. (5.5.3)

Proof. To simplify the notation, we may assume that z = 0. Since 0 €
0~ E, there is a positive constant C = C(n) such that

[vr(0)] = |DXE(B(r)|/IDXEl[B(r)] 2 C (5.5.4)
for all small r > 0. For almost all r > 0, it follows from Lemma 5.5.2 that

Dxg(B(r)) = / Z o (2)

EN8(B(R)) |z}

and therefore
|Dxg(B(r))| < H* '[ENJB(r))).

Consequently, (5.5.4) implies
IDXEN(B(r)) < CT'H" YEN&B(r)) < C e~ L. (5.5.5)

Note that (5.5.5) holds for all small values of r since the left side is a
left-continuous function of r. This establishes the upper bound in (5.5.3).

To establish (5.5.1), recall from Corollary 5.5.3 and (5.5.5) that for almost
allr >0,

P(EN B(r)) < P(E, B(r)) + H* Y{EN &(B(r))]

and
P(E,B(r)) < C"'H" '[En 3(B(r))).

Thus, an application of the isoperimetric inequality (Theorem 5.4.3) and
the previous two inequalities lead to

|E N B(r)|(»-Y/" < CP(EN B(r)) < CH"YENa(B(r)),






